

COMBIVERT F6

INSTRUCTIONS FOR USE | INSTALLATION F6 HOUSING 2

Translation of the original manual Document 20099887 EN 07

Preface

The described hard- and software are developments of the KEB Automation KG. The enclosed documents correspond to conditions valid at printing. Misprint, mistakes and technical changes reserved.

Signal words and symbols

Certain operations can cause hazards during the installation, operation or thereafter. There are safety informations in the documentation in front of these operations. Security signs are located on the device or machine. A warning contains signal words which are explained in the following table:

A DANGER

Dangerous situation, which will cause death or serious injury in case of non-observance of this safety instruction.

WARNING

Dangerous situation, which may cause death or serious injury in case of non-observance of this safety instruction.

A CAUTION

Dangerous situation, which may cause minor injury in case of non-observance of this safety instruction.

NOTICE

Situation, which can cause damage to property in case of non-observance.

RESTRICTION

Is used when certain conditions must meet the validity of statements or the result is limited to a certain validity range.

Is used when the result will be better, more economic or trouble-free by following these procedures.

More symbols

- ► This arrow starts an action step.
- / Enumerations are marked with dots or indents.
- => Cross reference to another chapter or another page.

Note to further documentation. www.keb.de/service/downloads

Laws and guidelines

KEB Automation KG confirms with the EC declaration of conformity and the CE mark on the device nameplate that it complies with the essential safety requirements.

The EC declaration of conformity can be downloaded on demand via our website. Further information is provided in chapter "Certification".

Warranty and liability

The warranty and liability on design, material or workmanship for the acquired device is given in the general sales conditions.

Here you will find our general sales conditions. www.keb.de/terms-and-conditions

Further agreements or specifications require a written confirmation.

Support

Through multiple applications not every imaginable case has been taken into account. If you require further information or if problems occur which are not treated detailed in the documentation, you can request the necessary information via the local KEB Automation KG agency.

The use of our units in the target products is outside of our control and therefore lies exclusively in the area of responsibility of the customer.

The information contained in the technical documentation, as well as any user-specific advice in spoken and written and through tests, are made to best of our knowledge and information about the intended use. However, they are regarded as being only informal and changes are expressly reserved, in particular due to technical changes. This also applies to any violation of industrial property rights of a third-party. Selection of our units in view of their suitability for the intended use must be done generally by the user.

Tests can only be done within the intended end use of the product (application) by the customer. They must be repeated, even if only parts of hardware, software or the unit adjustment are modified.

Copyright

The customer may use the instructions for use as well as further documents or parts from it for internal purposes. Copyrights are with KEB Automation KG and remain valid in its entirety.

This KEB product or parts thereof may contain third-party software, including free and/ or open source software. If applicable, the license terms of this software are contained in the instructions for use. The instructions for use are already available to you, can be downloaded free of charge from the KEB website or can be requested from the respective KEB contact person.

Other wordmarks or/and logos are trademarks ($^{\text{TM}}$) or registered trademarks ($^{\text{R}}$) of their respective owners.

Table of Contents

	Preface	3
	Signal words and symbols	3
	More symbols	3
	Laws and guidelines	4
	Warranty and liability	4
	Support	4
	Copyright	4
	Table of Contents	5
	List of Figures	8
	List of Tables	
	Glossary	
	Standards for drive converters/control cabinets	
	Product standards that apply directly to the drive converter	
	Basic standards to which drive converter standards refer directly	13
	Standards that are used in the environment of the drive converter	14
1	Basic Safety Instructions	15
•		
	1.1 Target group	
	1.2 Transport, storage and proper use	
	1.3 Installation 1.4 Electrical connection	
	1.4.1 EMC-compatible installation	
	1.4.2 Voltage test	
	1.4.3 Insulation measurement	
	1.5 Start-up and operation	
	1.6 Maintenance	
	1.8 Repair	
	1.7 Disposal	
2	Product Description	22
	2.1 Specified application	22
	2.1.1 Residual risks	22
	2.2 Unintended use	22
	2.3 Product features	
	2.4 Part code	24
3	Technical Data	26
_	3.1 Operating conditions	
	3.1.1 Climatic environmental conditions	
	3.1.2 Mechanical ambient conditions	
	3.1.3 Chemical / mechanical active substances	
	C. 1.C Onomical / modification doubt out of bubbla hours.	

TABLE OF CONTENTS

3.1.4 Electrical operating conditions	28
3.1.4.1 Device classification	28
3.1.4.2 Electromagnetic compatibility	28
3.2 Device data of the 230 V devices	29
3.2.1 Overview of the 230 V devices	29
3.2.2 Voltage and frequencies for 230V devices	30
3.2.2.1 Example of the calculation of the possible motor voltage 230V:	31
3.2.3 Input and output currents / overload for 230 V devices	31
3.2.3.1 Overload characteristic (OL) for 230 V devices	32
3.2.3.2 Frequency-dependent maximum current (OL2) for 230V devices	34
3.2.4 Power dissipation at rated operation of the 230V devices	38
3.2.5 Fuse protection of the drive converters of the 230V devices	38
3.3 Device data of the 400 V devices	39
3.3.1 Overview of the 400 V devices	39
3.3.2 Voltage and frequencies for 400V devices	40
3.3.2.1 Example of the calculation of the possible motor voltage:	41
3.3.3 Input and output currents / overload for 400 V devices	41
3.3.3.1 Overload characteristic (OL) for 400 V devices	42
3.3.3.2 Frequency-dependent maximum current (OL2) for 400V devices	44
3.3.4 Power dissipation at rated operation of the 400 V devices	49
3.3.5 Fuse protection of the drive converters of the 400V devices	49
3.4 General electrical data	50
3.4.1 Switching frequency and temperature of the 230 V devices	50
3.4.2 Switching frequency and temperature of the 400 V devices	50
3.4.3 DC link / braking transistor function (GTR7)	51
3.4.3.1 DC link / braking transistor function of the 230 V devices	51
3.4.3.2 DC link / braking transistor function of the 400 V devices	52
3.4.4 Fan	52
3.4.4.1 Switching behaviour of the fans	53
3.4.4.2 Switching points of the fans	53
3.5 Dimensions and weights	54
3.5.1 Built-in version air cooler	54
3.5.2 Push-through version IP20	55
3.5.3 Push-through version IP54	56
3.5.4 Control cabinet installation	57
3.5.4.1 Mounting instructions	57
3.5.4.2 Mounting distances	57
Installation and Connection	59
4.1 Overview of the COMBIVERT F6	
4.2 Connection of the power unit	
4.2.1 Connection of the voltage supply	
4.2.1.1 Terminal block X1A	

	4.2.2 Protective earth and function earth	64
	4.2.2.1 Protective earth	64
	4.2.2.2 Functional earthing	64
	4.2.3 AC mains connection	65
	4.2.3.1 AC supply 3-phase	65
	4.2.3.2 Supply line	65
	4.2.3.3 Note on hard power systems	66
	4.2.4 DC connection	67
	4.2.4.1 Terminal block X1A DC connection	67
	4.2.5 Connection of the motor	68
	4.2.5.1 Wiring of the motor	68
	4.2.5.2 Terminal block X1A motor connection	68
	4.2.5.3 Selection of the motor line	69
	4.2.5.4 Motor cable length and conducted interferences at AC supply	69
	4.2.5.5 Motor cable length for parallel operation of motors	70
	4.2.5.6 Motor cable cross-section	70
	4.2.5.7 Interconnection of the motor	70
	4.2.5.8 Connection of the temperature monitoring and brake control (X1C)	71
	4.2.6 Connection and use of a braking resistor	73
	4.2.6.1 Installation instructions for side-mounted braking resistors	73
	4.2.6.2 Terminal block X1A connection braking resistor	74
	4.2.6.3 Wiring of an intrinsically safe braking resistor	75
	4.2.6.4 Using a non-intrinsically safe braking resistor	
	4.3 Accessories	
	4.3.1 Filters and chokes	76
	4.3.2 Mounting kit shield connection brakets	
	4.3.3 Mounting kit push-through frame for IP20 devices	
	4.3.4 Side-mounted braking resistors	77
5	Certification	78
	5.1 CE-Marking	78
	5.2 UL certification	
	5.3 Further informations and documentation	80
R	Revision History	81

LIST OF FIGURES

List of Figures

Figure 1:	Turn-off time t depending on the overload I/IN at OC level 216 %	32
Figure 2:	Turn-off time t depending on the overload I/IN at OC level 180%	33
Figure 3:	Typical overload characteristics in the lower output frequencies (OL2) example device size 10	35
Figure 4:	Turn-off time t depending on the overload I/IN at OC level 216%	
Figure 5:	Turn-off time t depending on the overload I/IN at OC level 180%	
Figure 6:	Typical overload characteristics in the lower output frequencies (OL2) example device size 15.	
Figure 7:	Block diagram of the energy flow	51
Figure 8:	Switching behaviour of the fan example heat sink fan	53
Figure 9:	Dimensions built-in version air cooler	54
Figure 10:	Dimensions push-through version IP20	55
Figure 11:	Dimensions push-through version IP54	56
Figure 12:	Mounting distances	57
Figure 13:	Control cabinet ventilation	58
Figure 14:	F6 housing 2 top view	59
Figure 15:	F6 housing 2 front view	60
Figure 16:	F6 housing 2 Rear view with control board APPLICATION	61
Figure 17:	Input circuit	62
Figure 18:	Terminal block X1A	63
Figure 19:	Connection for protective earth	64
Figure 20:	Connection of the mains supply 3-phase	65
Figure 21:	Terminal block X1A DC connection	67
Figure 22:	Wiring of the motor	68
Figure 23:	Terminal block X1A motor connection	68
Figure 24:	Symmetrical motor line	69
Figure 25:	Terminal block X1C for control board APPLICATION and COMPACT	71
Figure 26:	Terminal block X1C for control board PRO	71
Figure 27:	Connection of the brake control	72
Figure 28:	Connection of a KTY sensor	
Figure 29:	Terminal block X1A connection braking resistor	74
Figure 30:	Wiring of an intrinsically safe braking resistor	75

List of Tables

Table 1:	Part code	25
Table 2:	Climatic environmental conditions	26
Table 3:	Mechanical ambient conditions	27
Table 4:	Chemical / mechanical active substances	27
Table 5:	Device classification	28
Table 6:	Electromagnetic compatibility	28
Table 7:	Overview of the 230V device data	30
Table 8:	Input voltages and frequencies of the 230V devices	30
Table 9:	DC link voltage for 230V devices	30
Table 10:	Output voltages and frequencies of the 230V devices	30
Table 11:	Example of the calculation of the possible motor voltage 230V:	31
Table 12:	Input currents of the 230 V devices	31
Table 13:	Output currents of the 230 V devices	31
Table 14:	Frequency-dependent maximum current for device size 10	36
Table 15:	Frequency-dependent maximum current for device size 12	37
Table 16:	Frequency-dependent maximum current for device size 13	37
Table 17:	Frequency-dependent maximum current for device size 14	38
Table 18:	Power dissipation of the 230 V devices	38
Table 19:	Fusing of the 230 V / 240 V devices	38
Table 20:	Overview of the 400V device data	40
Table 21:	Input voltages and frequencies of the 400V devices	40
Table 22:	DC link voltage for 400V devices	40
Table 23:	Output voltages and frequencies of the 400V devices	40
Table 24:	Example of the calculation of the possible motor voltage:	41
Table 25:	Input currents of the 400 V devices	41
Table 26:	Output currents of the 400 V devices	41
Table 27:	Frequency-dependent maximum current for device size 12	46
Table 28:	Frequency-dependent maximum current for device size 13	46
Table 29:	Frequency-dependent maximum current for device size 14	47
Table 30:	Frequency-dependent maximum current for device size 15	47
Table 31:	Frequency-dependent maximum current for device size 16 (2 kHz)	48
Table 32:	Frequency-dependent maximum current for device size 16 (4 kHz)	48
Table 33:	Power dissipation of the 400 V devices	49
Table 34:	Fusing of the 400 V / 480 V devices	49
Table 35:	Switching frequency and temperature of the 230 V devices	50
Table 36:	Switching frequency and temperature of the 400 V devices	50
Table 37:	DC link / braking transistor function of the 230 V devices	51
Table 38:	DC link / braking transistor function of the 400 V devices	52
Table 39:	Fan	52
Table 40:	Switching points of the fans	53
Table 41:	Mounting instructions for built-in version	57
Table 42:	Mounting instructions for push-through version	57

LIST OF FIGURES

Table 43:	Max. motor cable length	.69
Table 44:	Filters and chokes for 230V devices	
Table 45:	Filters and chokes for 400V devices	.76
Table 46:	Mounting kit shield connection brakets	.76
Table 47:	Mounting kit for IP20 devices	.76

Glossary

0V	Earth-potential-free common point	EtherCAT	Real-time Ethernet bus system of the
1ph	1-phase mains		company Beckhoff
3ph	3-phase mains	Ethernet	Real-time bus system - defines pro-
AC	AC current or voltage		tocols, plugs, types of cables
AFE	From 07/2019 AIC replaces the pre-	FE	Functional earth
	vious name AFE	FSoE	Functional Safety over Ethernet
AFE filter	From 07/2019 AIC filter replaces the	FU	Drive converter
	previous name AFE filter	GND	Reference potential, ground
AIC	Active Infeed Converter	GTR7	Braking transistor
AIC filter	Filter for Active Infeed Converter	HF filter	High frequency filter to the mains
Application	The application is the intended use of the KEB product	Hiperface	Bidirectional encoder interface of the company Sick-Stegmann
ASCL	Asynchronous sensorless closed loop	HMI	Human machine interface (touch screen)
Auto motor	Automatically motor identification;	HSP5	Fast, serial protocol
ident.	calibration of resistance and inductance	HTL	Incremental signal with an output voltage (up to 30V) -> TTL
AWG	American wire gauge	IEC	International standard
B2B	Business-to-business	IP xx	Degree of protection (xx for level)
BiSS	Open source real-time interface for	KEB product	The KEB product is subject of this
	sensors and actuators (DIN 5008)	·	manual
CAN	Fieldbus system	KTY	Silicium temperature sensor (pola-
CDM	Complete drive module including		rized)
	auxiliary equipment (control cabinet)	Manufacturer	The manufacturer is KEB, unless
COMBIVERT	KEB drive converters		otherwise specified (e.g. as ma-
COMBIVIS	KEB start-up and parameterizing		nufacturer of machines, engines,
	software	NACNA	vehicles or adhesives)
Customer	The customer has purchased a KEB	MCM	American unit for large wire cross sections
	product from KEB and integrates the KEB product into his product (cus-	Modulation	Means in drive technology that the
	tomer product) or resells the KEB	Modulation	power semiconductors are controlled
	product (dealer)	MTTF	Mean service life to failure
DC	DC current or voltage	NN	Sea level
DI	Demineralized water, also referred to	oc	Overcurrent
٥.	as deionized (DI) water	OH	Overheat
DIN	German Institut for standardization	OL	Overload
DS 402	CiA DS 402 - CAN device profile for	OSSD	Output signal swithching device; - an
	drives	0002	output signal that is checked in regu-
EMC	Electromagnetic compatibility		lar intervals on its shutdown. (safety
Emergency	Shutdown of a drive in emergency		technology)
stop	case (not de-energized)	PDS	Power drive system incl. motor and
Emergency	Switching off the voltage supply in		measuring probe
switching off	emergency case	PE	Protective earth
EN	European standard	PELV	Protective Extra Low Voltage
Encoder emu-	Software-generated encoder output	PFD	Term used in the safety technology
lation			(EN 61508-17) for the size of error
End customer	The end customer is the user of the		probability
	customer product	PFH	Term used in the safety technology
Endat	Bidirectional encoder interface of the		(EN 61508-17) for the size of error
	company Heidenhain		probability per hour
		I	

GLOSSARY

PLC	Programmable logic controller
PT100	Temperature sensor with R0=100 Ω
PT1000	Temperature sensor with R0=1000 Ω
PTC	PTC-resistor for temperature detec-
	tion
PWM	Pulse width modulation
RJ45	Modular connector with 8 lines
SCL	Synchronous sensorless closed loop
SELV	Safety Extra Low Voltage (<60 V)
SIL	The security integrity level is a
	measure for quantifying the risk
	reduction. Term used in the safety
	technology (EN 61508 -17)
SS1	Safety function "Safe stop 1" in ac-
	cordance with IEC 61800-5-2
SSI	Synchronous serial interface for
	encoder
STO	Safety function "Safe Torque Off" in
	accordance with IEC 61800-5-2
TTL	Incremental signal with an output
	voltage up to 5 V
USB	Universal serial bus
VARAN	Real-time Ethernet bus system

UL61800-5-1

Standards for drive converters/control cabinets

Product standards that apply directly to the drive converter

EN 61800-2

Adjustable speed electrical power drive systems - Part 2: General requirements-Rating specifications for low voltage adjustable frequency a.c. power drive systems (VDE 0160-102, IEC 61800-2)

EN 61800-3

Speed-adjustable electrical drives. Part 3: EMC requirements and specific test methods (VDE 0160-103, IEC 61800-3)

EN 61800-5-1

Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy (IEC 61800-5-1); German version EN 61800-5-1

Adjustable speed electrical power drive systems - Part 5-2: Safety Requirements - Functional (IEC 22G/264/CD)

American version of the EN61800-5-1 with "National Deviations"

Basic standards to which drive converter standards refer directly

	-
EN 55011	Industrial, scientific and medical equipment - Radio frequency disturbance characteristics - Limits and methods of measurement (CISPR 11); German version EN 55011
EN 55021	Interference to mobile radiocommunications in the presence of impulse noise - Methods of judging degradation and measures to improve performance (IEC/CISPR/D/230/FDIS); German version prEN 55021
EN 60529	Degrees of protection provided by enclosures (IP Code) (IEC 60529)
EN 60664-1	Insulation coordination for equipment within low-voltage systems Part 1: Principles, requirements and tests (IEC 60664-1)
EN 60721-3-1	Classification of environmental conditions - Part 3-1: Classification of groups of environmental parameters and their severities - Section 1: Storage (IEC 60721-3-1); German version EN 60721-3-1
EN 60721-3-2	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 2: Transportation and handling (IEC 104/670/CD)
EN 60721-3-3	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities; section 3: Stationary use at weatherprotected locations; Amendment A2 (IEC 60721-3-3); German version EN 60721-3-3
EN 61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems
EN 61000-2-4	Electromagnetic compatibility (EMC) - Part 2-4: Environment; Compatibility levels in industrial plants for low-frequency conducted disturbances (IEC 61000-2-4); German version EN 61000-2-4
EN 61000-4-2	Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test (IEC 61000-4-2); German version EN 61000-4-2
EN 61000-4-3	Electromagnetic compatibility (EMC) - Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test (IEC 61000-4-3); German version EN 61000-4-3
EN 61000-4-4	Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test (IEC 61000-4-4); German version EN 61000-4-4

STANDARDS FOR DRIVE CONVERTERS/CONTROL CABINETS

EN 61000-4-5	Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test (IEC 61000-4-5); German version EN 61000-4-5
EN 61000-4-6	Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields (IEC 61000-4-6); German version EN 61000-4-6
EN 61000-4-34	Electromagnetic compatibility (EMC) - Part 4-34: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests for equipment with mains current more than 16 A per phase (IEC 61000-4-34); German version EN 61000-4-34
EN 61508-17	Functional safety of electrical/electronic/programmable electronic safety-related systems – Part 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Safety of machinery - functional safety of electrical, electronic and programmable electronic safety-related systems (VDE 0113-50, IEC 62061)
EN ISO 13849-1	Safety of machinery - safety-related parts of control systems - Part 1: General principles for design (ISO 13849-1); German version EN ISO 13849-1

Standards that are used in the environment of the drive converter

DGUV regulation 3	Electrical installations and equipment
DIN 46228-1	Wire-end ferrules; Tube without plastic sleeve
DIN 46228-4	Wire-end ferrules; Tube with plastic sleeve
DINIEC 60364-5-54	Low-voltage electrical installations - Part 5-54: Selection and erection of electrical equipment - Earthing arrangements, protective conductors and protective bonding conductors (IEC 64/1610/CD)
DIN VDE 0100-729	Low-voltage electrical installations - Part 7-729: Requirements for special installations or locations - Operating or maintenance gangways (IEC 60364-7-729:2007, modified); German implementation HD 60364-7-729:2009
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
EN 1037	Safety of machinery - Prevention of unexpected start-up; German version EN 1037
EN 12502-15	Protection of metallic materials against corrosion - Part 15
EN 60204-1	Safety of machinery - electrical equipment of machines Part 1: General requirements (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Low-voltage switchgear and controlgear assemblies - Part 1: Type-tested and partially type-tested assemblies (IEC 60439-1); German version EN 60439-1
EN 60947-7-1	Low-voltage switchgear and controlgear - Part 7-1: Ancillary equipment - Terminal blocks for copper conductors (IEC 60947-7-1:2009); German version EN 60947-7-1:2009
EN 60947-8	Low-voltage switchgear and controlgear - Part 8: Control units for built-in thermal protection (PTC) for rotating electrical machines (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN 61373	Railway applications - Rolling stock equipment - Shock and vibration tests (IEC 61373); German version EN 61373
EN 61439-1	Low-voltage switchgear and controlgear assemblies - Part 1: General rules (IEC 121B/40/CDV); German version FprEN 61439-1
VGB R 455 P	Water treatment and use of materials in cooling systems
ISO 4017	Fasteners - Hexagon head screws - Product grades A and B
ISO 4762	Hexagon socket head cap screws
ISO 7090	Plain washers, chamfered - Normal series - Product grade A
ISO 7092	Plain washers - Small series - Product grade A
ISO 7045	Pan head screws with type H or type Z cross recess - Product grade A

1 Basic Safety Instructions

The COMBIVERT is designed and constructed in accordance with state-of-the-art technology and the recognised safety rules and regulations However, the use of such devices may cause functional hazards for life and limb of the user or third parties, or damages to the system and other material property.

The following safety instructions have been created by the manufacturer for the area of electric drive technology. They can be supplemented by local, country- or application-specific safety instructions. This list is not exhaustive. Non-observance of the safety instructions by the customer, user or other third party leads to the loss of all resulting claims against the manufacturer.

NOTICE

Hazards and risks through ignorance.

- ▶ Read the instructions for use!
- Observe the safety and warning instructions!
- ▶ If anything is unclear, please contact KEB Automation KG!

1.1 Target group

This instruction manual is determined exclusively for electrical personnel. Electrical personnel for the purpose of this instruction manual must have the following qualifications:

- Knowledge and understanding of the safety instructions.
- Skills for installation and assembly.
- Start-up and operation of the product.
- Understanding of the function in the used machine.
- Detection of hazards and risks of the electrical drive technology.
- Knowledge of DIN IEC 60364-5-54.
- Knowledge of national safety regulations (e.g. *DGUV regulation 3*).

1.2 Transport, storage and proper use

The transport is carried out by qualified persons in accordance with the environmental conditions specified in this manual. Drive converter shall be protected against excessive strains.

Transport of drive converters with an edge length >75 cm

The transport by forklift without suitable tools can cause a deflection of the heat sink. This leads to premature aging or destruction of internal components.

- ▶ Transport of drive converters on suitable pallets.
- ▶ Do not stack drive converters or burden them with other heavy objects.

Drive converters contain electrostatic sensitive components.

- Avoid contact.
- ► Wear ESD-protective clothing.

Do not store drive converters

- in the environment of aggressive and/or conductive liquids or gases.
- · with direct sunlight.
- outside the specified environmental conditions.

1.3 Installation

A DANGER

Do not operate in an explosive environment!

➤ The COMBIVERT is not intended for the use in potentially explosive environment.

A CAUTION

Maximum design edges and high weight!

Contusions and bruises!

- ► Never stand under suspended loads.
- Wear safety shoes.
- ► Secure drive converter accordingly when using lifting gear.
- To prevent damages to the device:
- Make sure that no components are bent and/or isolation distances are changed.
- The device must not be put into operation in case of mechanical defects. Non-compliance with the applicable standards.
- Do not allow moisture or mist to penetrate the unit.
- Avoid dust permeating the device. Allow for sufficient heat dissipation if installed in a dust-proof housing.
- Note installation position and minimum distances to surrounding elements. Do not cover the ventilation openings.
- Mount the drive inverter according to the specified degree of protection.
- Make sure that no small parts fall into the COMBIVERT during assembly and wiring (drilling chips, screws etc.). This also applies to mechanical components, which can lose small parts during operation.
- Check the reliable fit of the device connections in order to avoid contact resistances and sparking.
- Do not walk-on drive converter.
- The safety instructions are to be kept!

1.4 Electrical connection

A DANGER

Voltage at the terminals and in the device!

Danger to life due to electric shock!

- ▶ Never work on the open device or never touch exposed parts.
- ► For any work on the unit switch off the supply voltage, secure it against switching on and check absence of voltage by measurement.
- ► Wait until all drives has been stopped in order that no regenerative energy can be generated.
- ► Await capacitor discharge time (5 minutes) if necessary, measure DC voltage at the terminals.
- ► If personal protection is required, install suitable protective devices for drive converters.
- ▶ Never bridge upstream protective devices (also not for test purposes).
- Connect the protective earth conductor always to drive converter and motor.
- ▶ Install all required covers and protective devices for operation.
- ➤ The control cabinet shall be kept closed during operation.
- ► Residual current: This product may cause a dc current in the protective earth conductor. When a residual current protective device (RCD) or a residual current monitoring device (RCM) is used for the protection against direct or indirect contact, only a RCD or RCM type B is permitted on the power supply side of this product.
- ▶ Drive converters with a leakage current > 3.5 mA AC current (10 mA DC current) are intended for a stationary connection. Protective earth conductors must be designed in accordance with the local regulations for equipment with high leakage currents according to EN 61800-5-1, EN 60204-1 or DIN IEC 60364-5-54.

If personnel protection is required during installation of the system, suitable protective devices must be used for drive converters.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_gene-ral/ti_rcd_0400_0002_gbr.pdf

Installations which include drive converter shall be equipped with additional control and protective devices in accordance with the relevant applicable safety requirements, e.g. act respecting technical equipment, accident prevention rules etc. They must always be complied with, also for drive converter bearing a CE marking.

For a trouble-free and safe operation, please pay attention to the following instructions:

- The electrical installation shall be carried out in accordance with the relevant requirements.
- Cable cross-sections and fuses must be dimensioned by the user according to the specified minimum/maximum values for the application.
- The wiring must be made with flexible copper cable for a temperature > 75°C.
- Connection of the drive converter is only permissible on symmetrical networks with a maximum line voltage (L1, L2, L3) with respect to earth (N/PE) of max. 300 V. An isolating transformer must be used for supply networks which exceed this value! In case of non-compliance the control is not longer considered to be a PELV circuit.
- With existing or newly wired circuits the person installing the units or machines must ensure that the PELV requirements are met.
- For drive converters that are not isolated from the supply circuit (in accordance with *EN 60721-3-2*) all control lines must be included in other protective measures (e.g. double insulation or shielded, earthed and insulated).
- When using components without isolated inputs/outputs, it is necessary that equipotential bonding exists between the components to be connected (e.g. by the equipotential line). Disregard can cause destruction of the components by equalizing
 currents.

1.4.1 EMC-compatible installation

Observance of the limit values required by EMC law is the responsibility of the customer.

Notes on EMC-compatible installation can be found here. www.keb.de/fileadmin/media/Manuals/emv/0000neb0000.pdf

1.4.2 Voltage test

Testing with AC voltage (in accordance with *EN 60204-1* chapter 18.4) may not be executed, since there is danger for the power semiconductors in the drive inverter.

Due to the radio interference suppression capacitors, the test generator will switch off immediately with a current fault.

According to *EN 60204-1* it is permissible to disconnect already tested components. Drive converters of the KEB Automation KG are delivered ex works voltage tested to 100% according to product standard.

1.4.3 Insulation measurement

An insulation measurement (in accordance with *EN 60204-1* chapter 18.3) with DC 500 V is permissible, if all power unit connections (grid-connected potential) and all control connections are bridged with PE. The insulation resistance of the respective device can be found in the technical data.

1.5 Start-up and operation

The drive converter must not be started until it is determined that the installation complies with the machine directive; Account is to be taken of *EN* 60204-1.

WARNING

Software protection and programming!

Hazards caused by unintentional behavior of the drive!

- ► Check especially during initial start-up or replacement of the drive converter if parameterization is compatible to application.
- ➤ Securing a unit solely with software-supported functions is not sufficient. It is imperative to install external protective measures (e.g. limit switch) that are independent of the drive converter.
- Secure motors against automatic restart.

A CAUTION

High temperatures at heat sink and coolant!

Burning of the skin!

- Cover hot surfaces safe-to-touch.
- ▶ If necessary, attach warning signs on the system.
- ▶ Before touching, check the surface and coolant lines.
- ▶ Before working let the unit cool down.
- During operation, all covers and doors shall be kept closed.
- Use only approved accessories for this device.
- Never touch terminals, busbars or cable ends.

If a drive converter with electrolytic capacitors in a DC link (see technical data) has not been in operation for more than one year, observe the following instructions.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_general/ti_format_capacitors_0400_0001_gbr.pdf

NOTICE

Continuous operation (S1) with load > 60 % or from a rated motor power of 55 kW!

Premature ageing of the electrolytic capacitors!

▶ Mains choke with $U_k = 4\%$ absolutely necessary.

Switching at the output

Switching between motor and drive converter is prohibited for single drives during operation as this may trigger the protection gear of the device. Function ,speed search must be activated if switching can not be avoided. Speed search may only be triggered after closing the motor contactor (e.g. by switching the control release).

Connecting and disconnecting is permissible with multiple motor drives if at least 1 motor is running during the switch-over process. The drive converter must be dimensioned to the occurring starting currents.

The ,speed search' function must be activated if the motor is still running during a restart of the drive converter (mains on) (e.g. due to large rotating masses).

Switching an the input

For applications that require cyclic switching off and on of the drive converter, maintain an off-time of at least 5 min after the last switch on. If you require shorter cycle times please contact KEB Automation KG.

Short-circuit resistance

The drive converters are conditional short-circuit proof. After resetting the internal protection devices, the function as directed is guaranteed.

Exceptions:

- If an earth-leakage fault or short-circuit often occurs at the output, this can lead to a defect in the unit.
- If a short-circuit occurs during regenerative operation (2nd or 4th quadrant, regeneration into the DC link), this can lead to a defect in the unit.

1.6 Maintenance

The following maintenance work has to be carried out when required, but at least once per year by authorized and trained personnel. Check unit for loose screws and plugs and tighten if necessary.

- ▶ Check system for loose screws and plugs and tighten if necessary.
- ► Clean drive converter from dirt and dust deposits. Pay attention especially to cooling fins and protective grid of the fans.
- ▶ Examine and clean extracted air filter and cooling air filter of the control cabinet.
- ► Check the function of the fans of the drive converter. The fan must be replaced in case of audible vibrations or squeak.
- ▶ In the case of liquid-cooled drive converters a visual test of the cooling circuit for leaks and corrosion must be carried out. The cooling circuit must be completely empty if a unit shall be switched off for a longer period. The cooling circuit must be blown out additionally with compressed air at temperatures below 0°C.

1.8 Repair

In case of malfunction, unusual noises or smells inform a person in charge!

A DANGER

Unauthorized exchange, repair and modifications!

Unpredictable malfunctions!

- ► The function of the drive converter is dependent on its parameterization. Never replace without knowledge of the application.
- ► Modification or repair is permitted only by KEB Automation KG authorized personnel.
- ► Only use original manufacturer parts.
- ► Infringement will annul the liability for resulting consequences.

In case of failure, please contact the machine manufacturer. Only the machine manufacturer knows the parameterisation of the used drive converter and can provide an appropriate replacement or induce the maintenance.

1.7 Disposal

Electronic devices of the KEB Automation KG are exclusively professional devices for further industrial processing (so-called B2B devices).

Manufacturers of B2B devices are obliged to take back and recycle devices manufactured after 14.08.2018. These devices may not be disposed at the collection centres of public sector disposal organisations.

If no deviating agreement has been made between the customer and KEB or no deviating mandatory legal regulation exists, KEB products marked in this way can be returned. Company and keyword to the return point can be taken from the list below. Shipping costs are paid by the customer. Thereupon the devices will be professionally recycled and disposed.

The entry numbers are listed country-specific in the following table. The corresponding KEB return addresses can be found on our website.

Withdrawal by	WEEE-RegNo.		Keyword
Austria			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
France			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Germany			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Italy			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"

The packaging must be feed to paper and cardboard recycling.

2 Product Description

The device series COMBIVERT F6 concerns to drive converters, which are optimized for the operation at synchronous and asynchronous motors. The COMBIVERT can be extended with a safety module for the use in safety-oriented applications. It can be operated with a fieldbus module at different fieldbus systems. The control board has a system comprehensive operating concept.

The COMBIVERT meets the requirements of the Low-Voltage Directive. The harmonized standards of the series *EN 61800-5-1* for drive converter were used.

The COMBIVERT is a product of limited availability in accordance with *EN 61800-3*. This product may cause radio interference in residential areas. In this case the operator may need to take corresponding measures.

The machine directive, EMC directive, Low Voltage Directive and other guidelines and regulations must be observed depending on the version.

2.1 Specified application

The COMBIVERT serves exclusively for the control and regulation of three-phase motors. It is intended for the installation into electrical systems or machines.

Technical data and information for connection conditions shall be taken from the type plate and from the instruction manual and must be strictly observed.

The used semiconductors and components of the KEB Automation KG are developed and dimensioned for the use in industrial products.

Restriction

If the product is used in machines, which work under exceptional conditions or if essential functions, life-supporting measures or an extraordinary safety step must be fulfilled, the necessary reliability and security must be ensured by the machine builder.

2.1.1 Residual risks

Despite intended use, the drive converter can reach unexpected operating conditions in case of error, with wrong parameterization, by faulty connection or unprofessional interventions and repairs. This can be:

- · wrong direction of rotation
- · motor speed too high
- · motor is running into limitation
- motor can be under voltage even in standstill
- automatic start

2.2 Unintended use

The operation of other electric consumers is prohibited and can lead to the destruction of the device. The operation of our products outside the indicated limit values of the technical data leads to the loss of any liability claims.

2.3 Product features

This instruction manual describes the power circuits of the following devices:

Device type: Drive converter

Series: COMBIVERT F6

Power range: 2.2...7.5 kW / 230 V

4...15 kW / 400 V

Housing: 2

The COMBIVERT F6 is characterized by the following features:

- Operation of three-phase asynchronous motors and three-phase synchronous motors, in operating modes open-loop or closed-loop with and without speed feedback
- Following fieldbus systems are supported: EtherCAT, VARAN, PROFINET, POWERLINK or CAN
- · System-overlapping operating concept
- · Wide operating temperature range
- · Low switching losses by IGBT power device
- · Low noise development due to high switching frequencies
- · Different heat sink concepts:
 - · Air cooler as built-in version
 - Air cooler as push-through version with IP20 degree of protection
 - Air cooler as push-through version with IP54 degree of protection
- Temperature-controlled fan, easily replaceable
- Depending on the operating mode, the torque limits and the s-curves are adjustable (to protect the gearbox).
- General protection functions of the COMBIVERT series against overcurrent, overvoltage, ground fault and overtemperature
- Analog inputs and outputs, digital inputs and outputs, relay output (potential-free), brake control and -supply, motor protection by I²t, KTY- or PTC input, two encoder interfaces, diagnostic interface, fieldbus interface (depending on the control board)
- Integrated safety function according to EN 61800-5-2

2.4 Part code

x x F 6 x x x - x x x x

	Heat sink version	1: Air-cooler (water), mounted version 2: Liquid cooler (water), mounted version 3: Air-cooler, through-mount version IP54 4: Liquid cooler (water), through-mount version IP54 5: Air-cooler, through-mount version IP20 6: Liquid cooler (water), trough-mount version IP54, submounted braking resistors 7: Liquid cooler (oil), through-mount version IP54 9: Liquid cooler (water), mounted version, sub-mounted braking resistors A: Liquid cooler (water), trough-mount version IP54, submounted braking resistors version 2 B: Liquid cooler (water), mounted version, sub-mounted braking resistors version 2
		APPLIKATION 1: Multi Encoder Interface, CAN® 2), Real-Time Ethernet-busmodule 3)
	Control board variant	1: Multi Encoder Interface, CAN® 2), STO, EtherCAT® 1) 2: Multi Encoder Interface, CAN® 2), STO, VARAN PRO 3: Multi Encoder Interface, CAN® 2), Real-Time Ethernet interface 3), RD485-potential free 4: No Encoder, CAN® 2), Real-Time Ethernetinterface 3), safe relay
	Switching frequency,	5: Multi Encoder Interface, CAN® 2), Real-Time Ethernet interface 3), Safety Relay 0: 2kHz/125%/150% 6: 8kHz/150%/180% 1: 4kHz/125%/150% 7: 16kHz/150%/180% 2: 8kHz/125%/150% 8: 2kHz/180%/216%
	Software current limit, Turn-off current	3: 16kHz/125%/150% 9: 4kHz/180%/216% 4: 2kHz/150%/180% A: 8kHz/180%/216% 5: 4kHz/150%/180% B: 16kHz/180%/216%
	Voltage/ Connection type	1: 3ph 230 V AC/DC with braking transistor 2: 3ph 230 V AC/DC without braking transistor 3: 3ph 400 V AC/DC with braking transistor 4: 3ph 400 V AC/DC without braking transistor
	Housing	29
Equipment		0: Without safety function 1: Safety module type 1/STO at control type K 3: Safety module type 3 4: Safety module type 4 5: Safety module type 5
	Control type	A: APPLICATION K: COMPACT P: PRO continued on the next page

XXF6XXX-XXX

		Series	COMBIVERT F6
		Inverter size	1033
Table 1:	Part code		

The part code may not be used as order code, but only for identification!

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

CANopen® is registered trademark of CAN in AUTOMATION - International Users and Manufacturers Group e.V.

The Real-Time Ethernetbusmodul / Real-Time Ethernet interface contains various fieldbus control types which can be adjusted by software (parameter fb68)

3 Technical Data

Unless otherwise indicated, all electrical data in the following chapter refer to a 3-phase AC mains.

3.1 Operating conditions

3.1.1 Climatic environmental conditions

Storage		Standard	Class	Descriptions	
Surrounding temper	erature	EN 60721-3-1	1K4	-2555°C	
Relative humidity		EN 60721-3-1	1K3	595% (without condensation)	
Storage height		_	_	Max. 3000 m above sea level	
Transport		Standard	Class	Descriptions	
Surrounding temper	erature	EN 60721-3-2	2K3	-2570°C	
Relative humidity		EN 60721-3-2	2K3	95% at 40°C (without condensation)	
Operation		Standard	Class	Descriptions	
Surrounding temper	erature	EN 60721-3-3	3K3	540°C (extended to -1045°C)	
Coolant inlet tem-	Air	_	_	540°C (-1045°C)	
perature	Liquid	_	_	540°C	
Relative humidity		EN 60721-3-3	3K3	585% (without condensation)	
	•			Protection against foreign material > ø12.5 mm	
				No protection against water	
Version and degree	e of protection	EN 60529	IP20	Non-conductive pollution, occasional condensation when PDS is out of service.	
				Drive converter generally, except power connections and fan unit (IPxxA)	
				Max. 2000 m above sea level	
Site altitude			_	With site altitudes over 1000 m a derating of 1 % per 100 m must be taken into consideration.	
		_	_	With site altitudes over 2000 m, the control board to the mains has only basic isolation. Additional measures must be taken when wiring the control.	
Table 2: Climatic environmental conditions					

3.1.2 Mechanical ambient conditions

Storage	Standard	Class	Descriptions
\/ibvation limita	EN 60704 2.4	40.40	Vibration amplitude 1.5 mm (29 Hz)
Vibration limits	EN 60721-3-1	1M2	Acceleration amplitude 5 m/s² (9200 Hz)
Shock limit values	EN 60721-3-1	1M2	40 m/s²; 22 ms
Transport	Standard	Class	Descriptions
			Vibration amplitude 3.5 mm (29 Hz)
Vibration limits	EN 60721-3-2	2M1	Acceleration amplitude 10 m/s² (9200 Hz)
			(Acceleration amplitude 15 m/s² (200500 Hz))*
Shock limit values	EN 60721-3-2	2M1 100 m/s²; 11 ms	
Operation	Standard	Class	Descriptions
	EN 60721-3-3	3M4	Vibration amplitude 3.0 mm (29 Hz)
Vibration limits	EN 00721-3-3	31014	Acceleration amplitude 10 m/s² (9200 Hz)
VIDIALION IIIIIIIS	5W 04000 5 4		Vibration amplitude 0.075 mm (1057 Hz)
	EN 61800-5-1	_	Acceleration amplitude 10 m/s² (57150 Hz)
Shock limit values	EN 60721-3-3	3M4	100 m/s²; 11 ms
Table 3: Mechanical a	ambient conditions		

^{*}Not tested

3.1.3 Chemical / mechanical active substances

Storage		Standard	Class	Descriptions	
Contomination	Gases	EN 60721-3-1	1C2	_	
Contamination	Solids	EN 60721-3-1	1S2	-	
Transport		Standard	Class	Descriptions	
Contamination	Gases	EN 60721-3-2	2C2	_	
Contamination	Solids		2S2	_	
Operation		Standard	Class	Descriptions	
Contamination	Gases	EN 60721-3-3	3C2	_	
Solids		EN 00721-3-3	3S2	_	
Table 4: Che	Table 4: Chemical / mechanical active substances				

3.1.4 Electrical operating conditions

3.1.4.1 Device classification

Requirement Standard		Class	Descriptions			
Overveltage estagen	EN 61800-5-1	III	-			
Overvoltage category	EN 60664-1	111	_			
Pollution degree	EN 60664-1	2	Non-conductive pollution, occasional condensation when PDS is out of service			
Table 5: Device classification						

3.1.4.2 Electromagnetic compatibility

For devices without an internal filter, an external filter is required to comply with the following limits.

EMC emitted interference	Standard	Class	Descriptions
Conducted emissions	EN 61800-3	C2	_
Radiated emissions	EN 61800-3	C2	_
Immunity	Standard	Level	Descriptions
Static discharges	EN 61000-4-2	8kV 4kV	AD (air discharge) CD (contact discharge)
Burst - Ports for process measurement control lines and signal interfaces	EN 61000-4-4	2kV	_
Burst - Power ports	EN 61000-4-4	4 kV	-
Surge - Power ports	EN 61000-4-5	1kV 2kV	Phase-phase Phase-ground
Immunity to conducted disturbances, induced by radio-frequency fields	EN 61000-4-6	10 V	0.1580 MHz
Electromagnetic fields	EN 61000-4-3	10 V/m 3 V/m 1 V/m	80MHz1GHz 1.42GHz 22.7GHz
Voltage fluctuations/ voltage dips	EN 61000-2-1 EN 61000-4-34	_	-15 %+10 % 90 %
Frequency changes	EN 61000-2-4	_	≤ 2 %
Voltage deviations	EN 61000-2-4	_	±10%
Voltage unbalance	EN 61000-2-4	_	≤ 3 %
Table 6: Electromagnetic of	compatibility		

3.2 Device data of the 230 V devices

3.2.1 Overview of the 230 V devices

The technical data are for 2/4-pole standard motors. With other pole numbers the drive converter must be dimensioned onto the rated motor current. Contact KEB for special or medium frequency motors.

Device size			10	12	13	14	
Housing				2	2		
Rated apparent output power		Sout / kVA	4.4	7	9.6	13	
Max. rated motor power		Pmot / kW	2.2	4	5.5	7.5	
Rated input voltage		Un / V		230 (U	L: 240)		
Input voltage range		Uin / V		170	264		
Mains phases				3	3		
Mains frequency		f _N / Hz		50 / 6	60 ±2		
Rated input current @ U _N = 230V		lin / A	16.5	22	30	41.5	
Rated input current @ UN = 240V		lin_UL / A	16.5	22	30	41.5	
Output voltage		Uout / V		0	Uin		
Output frequency	2)	fout / Hz		0	599		
Output phases				3	3		
Rated output current		In / A	11	17.5	24	33	
@ <i>U</i> N = 230 V		INTA	11	17.5	24	33	
Rated output current		In_UL / A	11	17.5	24	33	
@ <i>U</i> N = 240 V		IN_UL I A	11	17.5	24	33	
Rated output overload (60s)	1) 5)	160s / %		15	50		
Software current limit		Ilim / %	18	30	1:	50	
Overcurrent	1)	loc / %	2	16	18	80	
Rated switching frequency		fsn / kHz	8	4	4	4	
Max. switching frequency	4)	fs_max / kHz		1	6		
Power dissipation at rated operation	3)	P _D / W	102		tbd		
Overload current over time		IOL / %	=> "Overloa	d characterist	ic (OL) for 23	30 V devices"	
Maximum current 0Hz/50Hz at fs=2kHz		IMax_Out / %	216/216				
Maximum current 0Hz/50Hz atfs=4 kHz Maximum current 0Hz/50Hz at fs=8 kHz		IMax_Out / %	200/216	tbd			
		IMax_Out / %	173/216				
Maximum current 0Hz/50Hz at fs=16kHz		IMax_Out / %	127/216				
Max. braking current		IB_max / A		21	.5		
Min. braking resistor value		RB_min / Ω		19		12	

DEVICE DATA OF THE 230 V DEVICES

Device size	10	12	13	14	
Housing	2				
Protection function for braking transistor (GTR7)	No protection function available				
Insulating resistance @ Udc = 500V	> 20				
Table 7: Overview of the 230V device data					

- 1) The values refer in % to the rated output current IN.
- The output frequency is to be limited in such a way that it does not exceed 1/10 of the switching frequency. Devices with higher max. output frequency are subject to export restrictions and are only available upon request.
- Rated operation corresponds to $U_N = 230V$, rated switching frequency, output frequency = 50 Hz (4-pole standard asynchronous motor).
- ⁴⁾ A detailed description of the derating => "Switching frequency and temperature of the 230 V devices".
- ⁵⁾ Observe limitations => "Overload characteristic (OL) for 230 V devices".

3.2.2 Voltage and frequencies for 230V devices

Input voltages and frequencies				
Rated input voltage	Un / V	230		
Rated mains voltage (USA)	UN_UL / V	240		
Input voltage range	UIN / V	170264		
Input phases		3		
Mains frequency	f _N / Hz	50/60		
Mains frequency tolerance $\pm f_N$ / Hz 2				
Table 8: Input voltages and frequencies of the 230V devices				

DC link voltage		
DC link rated voltage @ Un = 400V	U _{N_dc} / V	325
DC link rated voltage @ Un_uL = 480V	UN_UL_dc / V	339
DC link voltage working voltage range	UIN_dc / V	240373
Table 9: DC link voltage for 230V devices		

Output voltages and frequencies					
Output voltage at AC supply	1) <i>Uout</i> / V	0 <i>Uin</i>			
Output frequency	2) fout / Hz	0599			
Output phase		3			
Table 10: Output voltages and frequencies of the 230V devices					

The voltage to the motor is dependent on the actual input voltage and the control method (=> "Example of the calculation of the possible motor voltage 230V:").

The output frequency is to be limited in such a way that it does not exceed 1/10 of the switching frequency. Devices with higher max. output frequency are subject to export restrictions and are only available on request.

3.2.2.1 Example of the calculation of the possible motor voltage 230V:

The motor voltage for dimensioning of the drive is depending on the used components. The motor voltage reduces according to the following table:

Component	Reduction / %	Example
Mains choke Uk	4	Example:
Drive converter open-loop	4	open-loop drive converter with mains- and motor choke at
Drive converter closed-loop	8	non-rigid supply system:
Motor choke Uk	1	230 V mains voltage - 11 % = 204,7 V motor voltage
Non-rigid supply system	2	
Table 11: Example of the ca	alculation of the po	ssible motor voltage 230V:

3.2.3 Input and output currents / overload for 230 V devices

Device size		10	12	13	14
Rated input current @ UN = 230V	Iin / A	16.5	22	30	41.5
Rated input current @ UN_UL = 240V	lin_UL / A	16.5	22	30	41.5
Table 12: Input currents of the 230 V devices					

¹⁾ The values resulting from rated operation with B6 rectifier circuit and mains choke 4% Uκ.

Device size			10	12	13	14	
Rated output current @ UN = 230V	In / A		11 17.5		24	33	
Rated output current @ UN_UL = 240V		IN_UL / A	11	17.5	24	33	
Rated output overload (60s)	1)	160s / %	150				
Overload current	1)	IOL / %	=> "Overload characteristic (OL) for 230 V devices"				
Software current limit	2)		180 150			50	
Overcurrent	1)	loc / %	216		180		
Table 13: Output currents of the 230 V dev	/ices		•				

The values refer in % to the rated output current In.

²⁾ Limitation of the current setpoint in closed-loop operation. This setpint limit is not active in v/f operation.

3.2.3.1 Overload characteristic (OL) for 230 V devices

All drive converters with overload characteristic of 180% or 216% can be operated at rated switching frequency with an utilization of 150 % for 60 s.

Restrictions:

- The thermal design of the heat sink is based on the rated operation. The following values are taken into account: Rated output current, ambient temperature, rated switching frequency, rated voltage.
- At high surrounding temperatures and/or high heat sink temperatures (for example, by preceding utilization nearby 100%) the drive converter can change to overtemperature error before triggering the protective function OL.
- At low output frequencies or switching frequencies higher than the rated switching frequency, the frequency-dependent maximum current can be exceeded before and error OL2 can be triggered (=> "Frequency-dependent maximum current (OL2) for 230V devices").

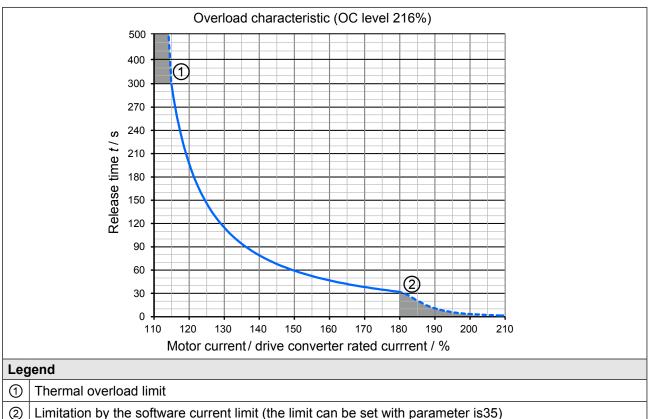
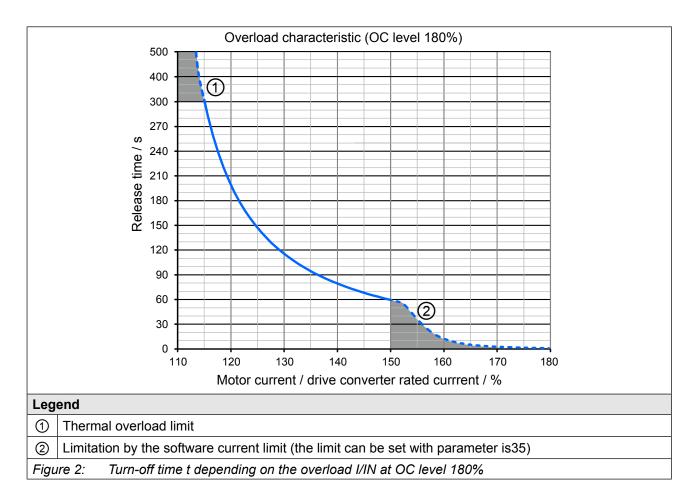



Figure 1: Turn-off time t depending on the overload I/IN at OC level 216%

- On exceeding a load of 105 % the overload integrator starts.
- When falling below the integrator counts backwards.
- If the integrator reaches the overload characteristic "Error! overload (OL)" is triggered.

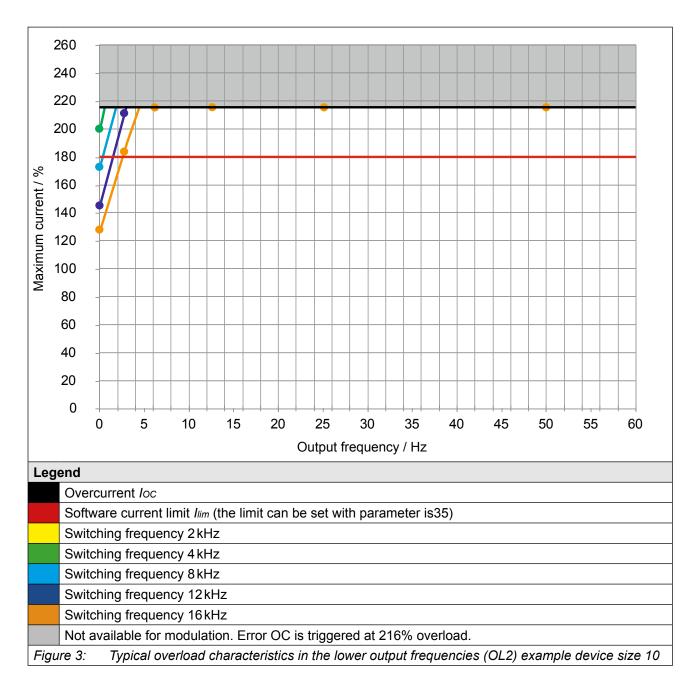
After a cooling down period, the integrator can be reset now. The drive converter must remain switched on during the cooling down phase.

Operation in the range of the thermal overload limit

Due to the high steepness of the overload characteristic, the duration of a permissible overload in this range ① cannot be determined exactly. Therefore, the design of the drive converter should be assumed to have a maximum overload time of 300s.

DEVICE DATA OF THE 230 V DEVICES

3.2.3.2 Frequency-dependent maximum current (OL2) for 230V devices


The characteristics of the maximum currents for a switching frequency which are depending on the output frequency are different for each drive converter, but the following rules are generally applicable:

- Applies for the rated switching frequency: at 0 Hz the drive converter can provide at least the rated output current and from 6 Hz the overcurrent *loc*.
- Lower maximum currents apply for switching frequencies > rated switching frequency.

If error (OL2) shall be triggered on exceeding the maximum currents or if the switching frequency is automatically reduced "Derating" can be adjusted in the drive converter parameters.

The following characteristic curve indicates the permissible maximum current for the output frequency values 0 Hz, 3.1 Hz, 6.2 Hz, 12.5 Hz, 25 Hz and 50 Hz. Device size 10 is shown as an example.

The frequency-dependent maximum current $I_{\it lim}$ refers in % to the rated output current $I_{\it N}$.

The current remains constant from the last specified output frequency value.

The values for the respective device size are listed in the following tables.

Frequency-dependent maximum current

Device size			10						
Rated switching frequency			8 kHz						
Output frequency	fout / Hz	0	3.1	6.2	12.5	25	50		
	2kHz	216	216	216	216	216	216		
Francisco de la desta maximum august (1) fa la 10	4 kHz	200	216	216	216	216	216		
Frequency-dependent maximum current @ fs liim 9 Basic Time Period = 62.5 µs (Parameter is 22=0)	8 kHz	173	216	216	216	216	216		
Basic Time Feriou – 62.5 µs (Farameter 1522–0)	16kHz	127	191	216	216	216	216		
	1.75 kHz	216	216	216	216	216	216		
Francisco de la desta maximum august @ fa // / / /	3.5 kHz	205	216	216	216	216	216		
Frequency-dependent maximum current @ fs liim % Basic Time Period = 71.4 \(\mu \)s (Parameter is 22=1)	7 kHz	180	216	216	216	216	216		
Basic Time Feriod – 71.4 µs (Farameter 1522–1)	14 kHz	136	205	216	216	216	216		
	1.5 kHz	216	216	216	216	216	216		
 Frequency-dependent maximum current @ fs liim %	3kHz	209	216	216	216	216	216		
	6 kHz	186	216	216	216	216	216		
Basic Time Period = 83.3 µs (Parameter is22=2)	12kHz	146	216	216	216	216	216		
	1.25 kHz	216	216	216	216	216	216		
Francisco de la contractica del la contractica del la contractica de la contractica	2.5 kHz	214	216	216	216	216	216		
Frequency-dependent maximum current @ fs lim %	5kHz	193	216	216	216	216	216		
Basic Time Period = 100 µs (Parameter is22=3)	10 kHz	159	216	216	216	216	216		
Table 14: Frequency-dependent maximum current for device size 10									

Device size			12							
Rated switching frequency	switching frequency			4 kHz						
Output frequency	fout / Hz	0	3	6	12.5	25	50			
	2 kHz									
Evaguancy dependent maximum auguent @ fa lu / /	4 kHz									
Frequency-dependent maximum current @ fs lim 1	8 kHz									
Basic Time Period = 62.5 µs (Parameter is22=0)	16kHz									
	1.75 kHz									
Frequency-dependent maximum current @ fs Ilim 9	3.5 kHz			TBD						
	%									
Basic Time Period = 71.4 µs (Parameter is22=1)	14 kHz									
<u> </u>	1.5 kHz									
Francisco de condent maximum august @ fa la 10	3 kHz									
Frequency-dependent maximum current @ fs lim 1	6 kHz									
Basic Time Period = 83.3 µs (Parameter is22=2)	12kHz									
	1.25 kHz									
Francisco de la condenta confirma a comenta de la 11	2.5 kHz									
Frequency-dependent maximum current @ fs I_{lim} / % Basic Time Period = 100 μ s (Parameter is 22=3)	% 5 kHz									
	10 kHz									
Table 15: Frequency-dependent maximum current	for device size	12			,					

Device size			13							
Rated switching frequency		4 kHz								
Output frequency	fout / Hz	0	3.1	6.2	12.5	25	50			
	2 kHz									
Francisco de nondent movimum august @ fa /r / 0/	4 kHz									
Frequency-dependent maximum current @ fs Ilim %	8 kHz									
Basic Time Period = 62.5 µs (Parameter is22=0)	16 kHz									
	1.75 kHz									
Francisco de la condent mariant mariant a fa la 10/	3.5 kHz			TBD						
Frequency-dependent maximum current @ fs Iiim % Basic Time Period = 71.4 \(\mu \) (Parameter is 22=1)	7 kHz									
	14 kHz									
Basic Time Feriou – 71.4 µs (Farameter 1522–1)	1.5 kHz									
Francisco de la condent mariant management @ fa la 10/	3 kHz									
Frequency-dependent maximum current @ fs Ilim %	6kHz									
Basic Time Period = 83.3 µs (Parameter is22=2)	12 kHz									
	1.25 kHz									
Francisco de mandant massimo en coment & f. 1. 100	2.5 kHz									
Frequency-dependent maximum current @ fs Ilim % - Basic Time Period = 100 µs (Parameter is 22=3)	5 kHz									
	10 kHz									
Table 16: Frequency-dependent maximum current fo	r device size	13	•	•	, ,					

Device size			14							
Rated switching frequency		4 kHz								
Output frequency		0	3.1	6.2	12.5	25	50			
	2kHz									
Everyoney dependent maximum august @ fe /u / 0/	4 kHz									
Frequency-dependent maximum current @ fs lim %	8 kHz									
Basic Time Period = 62.5 μs (Parameter is22=0)	16 kHz									
	1.75 kHz									
Frequency-dependent maximum current @ fs Ilim % Basic Time Period = 71.4 \(\mu \)s (Parameter is 22=1)	3.5 kHz			TBD —						
	7 kHz									
	14 kHz									
, , , , , , , , , , , , , , , , , , , ,	1.5kHz									
Francisco de condent maximum aument @ fa lu 10/	3kHz									
Frequency-dependent maximum current @ fs Ilim %	6kHz									
Basic Time Period = 83.3 μs (Parameter is22=2)	12 kHz									
	1.25 kHz									
5	2.5 kHz									
Frequency-dependent maximum current @ fs Ilim % Basic Time Period = 100 µs (Parameter is 22=3)	5kHz									
	10 kHz									
Table 17: Frequency-dependent maximum current fo	r device size	14	•	•	, ,					

3.2.4 Power dissipation at rated operation of the 230V devices

Device size		10	12	13	14
Power dissipation at rated operation	1) <i>P</i> _D / W	102	tbd	tbd	tbd
Table 18: Power dissipation of the 230					

¹⁾ Rated operation corresponds to $U_N = 230 \, \text{V}$; f_{SN} ; I_N ; $f_N = 50 \, \text{Hz}$ (typically value)

3.2.5 Fuse protection of the drive converters of the 230V devices

	Max. size of the fuse / A								
Device size	U _N = 230 V gG (IEC)	<i>U</i> _N = 240 V class "J"		240 V gR					
	SCCR 30 kA	SCCR 5kA	SCCR 30 kA	Туре					
10									
12		тг	BD						
13		10	טט						
14									
Table 19: Fu	Table 19: Fusing of the 230 V / 240 V devices								

Short-circuit capacity

After requests from *EN 60439-1* and *EN 61800-5-1* the following is valid for the connection to a network: The devices are suitable for use in a circuit capable of delivering not more than 30 kA eff. unaffected symmetrical short-circuit current.

3.3 Device data of the 400 V devices

3.3.1 Overview of the 400 V devices

The technical data are for 2/4-pole standard motors. With other pole numbers the drive converter must be dimensioned onto the rated motor current. Contact KEB for special or medium frequency motors.

Device size		12	13	14	15	1	6	
Housing						2		
Rated apparent output power		Sout / kVA	6.6	8.3	11.4	16.6	22	2.9
Max. rated motor power		Pmot / kW	4	5.5	7.5	11	1	5
Rated input voltage		Un / V			400 (U	L: 480)		
Input voltage range		Uin / V			280.	550		
Mains phases						3		
Mains frequency		f _N / Hz			50 / 6	60 ±2		
Rated input current @ U _N = 400V		Iin / A	13	17	21	31	4	3
Rated input current @ UN = 480V		lin_UL / A	11	15	18	27	3	5
Output voltage		Uout / V			0	Uin		
Output frequency	2)	fout / Hz			0	599		
Output phases					(3		
Rated output current		In / A	9.5	12	16.5	24	2	3
@ UN = 400 V		INTA	9.5	12	10.5	24	3	
Rated output current		In_ul / A	7.6	11	14	21	2	7
@ UN = 480 V		IN_UL I A	7.0	11	14	21		
Rated output overload (60s)	1) 5)	160s / %			1	50		
Software current limit				180			150	
Overcurrent	1)	loc / %		216			180	
Rated switching frequency		fsn / kHz	8	8	4	4	2	4
Max. switching frequency	4)	fs_max / kHz			1	6		
Power dissipation at rated operation	3)	Po / W	155	180	175	250	275	330
Overload current over time		IOL / %	=> "Ove	erload ch	aracterist	ric (OL) fo	or 400 V (devices"
Maximum current 0Hz/50Hz at fs=2kHz		Imax_out / %	211/216	216/216	157/216	108/180	100/180	127/180
Maximum current 0Hz/50Hz atfs=4kHz		Imax_out / %	168/216	200/216	145/216	100/180	75/166	100/180
Maximum current 0Hz/50Hz at fs=8kHz		Imax_out / %	116/216	100/216	72/187	50/129	48/118	91/180
Maximum current 0Hz/50Hz at fs=16 kHz		Imax_out / %	63/168	58/150	42/109	29/75	24/69	58/124
Max. braking current		I _{B_max} / A		21	1.5		33	3.6
Min. braking resistor value		RB_min / Ω		3	9		2	5
continued on the next page								

DEVICE DATA OF THE 400 V DEVICES

Device size			13	14	15	16
Housing		2				
Protection function for braking transistor (GTR7)		No protection function available				/ailable
Insulation resistance @ Udc = 500 V	Riso / MΩ	> 20				
Table 20: Overview of the 400V device data						

- The values refer in % to the rated output current In.
- The output frequency is to be limited in such a way that it does not exceed 1/10 of the switching frequency. Devices with higher max. output frequency are subject to export restrictions and are only available upon request.
- Rated operation corresponds to $U_N = 400V$, rated switching frequency, output frequency = 50 Hz (4-pole standard asynchronous motor).
- 4) A detailed description of the derating => "Switching frequency and temperature of the 400 V devices".
- 5) Observe limitations => "Overload characteristic (OL) for 400 V devices".

3.3.2 Voltage and frequencies for 400V devices

Input voltages and frequencies				
Rated input voltage	Un / V	400		
Rated mains voltage (USA)	Un_ul / V	480		
Input voltage range	UIN / V	280550		
Input phases		3		
Mains frequency	f _N / Hz	50/60		
Mains frequency tolerance	±f∧ / Hz	2		
Table 21: Input voltages and frequencies of the 400V devices				

DC link voltage					
DC link rated voltage @ $U_N = 400V$ U_{N_dc} / V 565					
DC link rated voltage @ Un_uL = 480V	UN_UL_dc / V	680			
DC link voltage working voltage range	UIN_dc / V	390780			
Table 22: DC link voltage for 400V devices					

Output voltages and frequencies					
Output voltage at AC supply	1) Uout / V	0U <i>N_ac</i>			
Output frequency	2) fout / Hz	0599			
Output phase		3			
Table 23: Output voltages and frequencies of the 400V devices					

- The voltage to the motor is dependent on the actual input voltage and the control method (=> "Example of the calculation of the possible motor voltage:").
- The output frequency is to be limited in such a way that it does not exceed 1/10 of the switching frequency. Devices with higher max. output frequency are subject to export restrictions and are only available on request.

3.3.2.1 Example of the calculation of the possible motor voltage:

The motor voltage for dimensioning of the drive is depending on the used components. The motor voltage reduces according to the following table:

Component	Reduction / %	Example
Mains choke Uk	4	Example:
Drive converter open-loop	4	open-loop drive converter with mains- and motor choke at
Drive converter closed-loop	8	non-rigid supply system:
Motor choke Uk	1	400 V mains voltage - 11 % = 356 V motor voltage
Non-rigid supply system	2	-
Table 24: Example of the c	alculation of the po	ssible motor voltage:

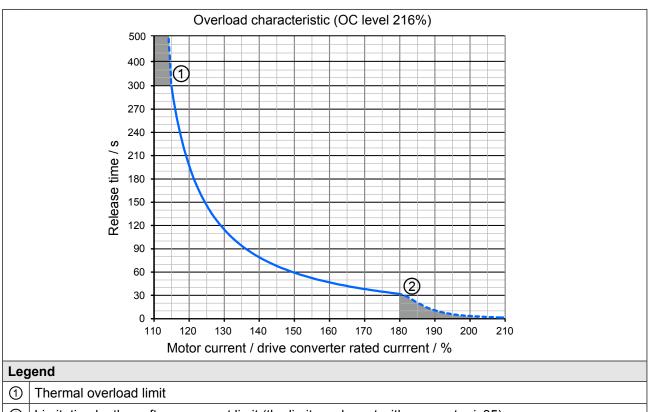
3.3.3 Input and output currents / overload for 400 V devices

Device size		12	13	14	15	16
Rated input current @ UN = 400V	lin / A	13	17	21	31	43
Rated input current @ UN_UL = 480V	Iin_UL / A	11	15	18	27	35
Table 25: Input currents of the 400 V devices						

The values resulting from rated operation with B6 rectifier circuit and mains choke 4% Uk.

Device size			12	13	14	15	16 (2 kHz)	16 (4 kHz)		
Rated output current @ U _N = 400V		In / A	9.5	12	16.5	24	3	3		
Rated output current @ UN_UL = 480V		IN_UL / A	7.6	11	14	21	27			
Rated output overload (60s)	1)	160s / %			15	50				
Overload current	1)	IOL / %	=> "Ove	erload ch	aracterist	ic (OL) fo	r 400 V a	levices"		
Software current limit	2)	Ilim %	180 150							
Overcurrent	1)	loc / %	216 180							
Table 26: Output currents of the 400 V devices										

The values refer in % to the rated output current In.


²⁾ Limitation of the current setpoint in closed-loop operation. This setpint limit is not active in v/f operation.

3.3.3.1 Overload characteristic (OL) for 400 V devices

All drive converters with overload characteristic of $180\,\%$ or $216\,\%$ can be operated at rated switching frequency with an utilization of $150\,\%$ for $60\,s$.

Restrictions:


- The thermal design of the heat sink is based on the rated operation. The following values are taken into account: Rated output current, ambient temperature, rated switching frequency, rated voltage.
- At high surrounding temperatures and/or high heat sink temperatures (for example, by preceding utilization nearby 100%) the drive converter can change to overtemperature error before triggering the protective function OL.
- At low output frequencies or switching frequencies higher than the rated switching frequency, the frequency-dependent maximum current can be exceeded before and error OL2 can be triggered (=> "Frequency-dependent maximum current (OL2) for 400V devices").

(2) Limitation by the software current limit (the limit can be set with parameter is 35)

Figure 4: Turn-off time t depending on the overload I/IN at OC level 216%

- On exceeding a load of 105 % the overload integrator starts.
- When falling below the integrator counts backwards.
- If the integrator reaches the overload characteristic "Error! overload (OL)" is triggered.

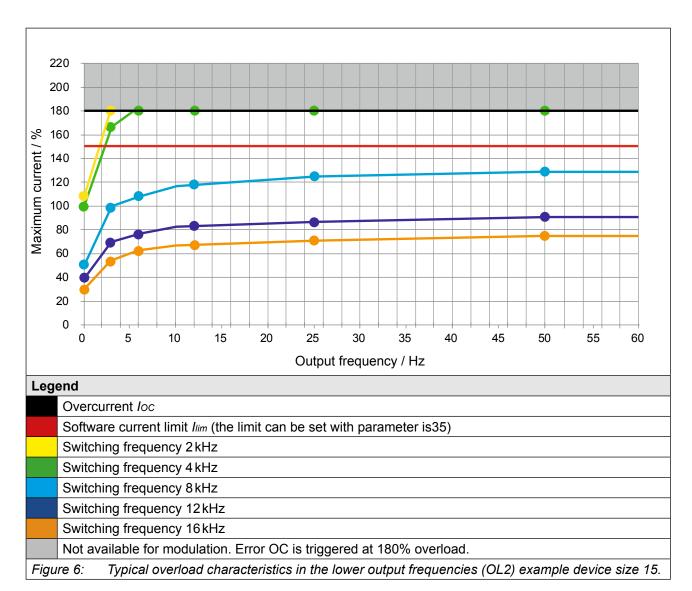
After a cooling down period, the integrator can be reset now. The drive converter must remain switched on during the cooling down phase.

Operation in the range of the thermal overload limit

Due to the high steepness of the overload characteristic, the duration of a permissible overload in this range ① cannot be determined exactly. Therefore, the design of the drive converter should be assumed to have a maximum overload time of 300s.

DEVICE DATA OF THE 400 V DEVICES

3.3.3.2 Frequency-dependent maximum current (OL2) for 400V devices


The characteristics of the maximum currents for a switching frequency which are depending on the output frequency are different for each drive converter, but the following rules are generally applicable:

- Applies for the rated switching frequency: at 0 Hz the drive converter can provide at least the rated output current and from 6 Hz the overcurrent *loc*.
- Lower maximum currents apply for switching frequencies > rated switching frequency.

If error (OL2) shall be triggered on exceeding the maximum currents or if the switching frequency is automatically reduced "Derating" can be adjusted in the drive converter parameters.

The following characteristic curve indicates the permissible maximum current for the output frequency values 0 Hz, 3.1 Hz, 6.2 Hz, 12.5 Hz, 25 Hz and 50 Hz. Device size 15 is shown as an example.

The frequency-dependent maximum current I_{lim} refers in % to the rated output current I_{N} .

The current remains constant from the last specified output frequency value.

The values for the respective device size are listed in the following tables.

Frequency-dependent maximum current

Device size				1	2		
Rated switching frequency				8 k	Hz		
Output frequency	fout / Hz	0	3.1	6.2	12.5	25	50
	2kHz	211	216	216	216	216	216
Eroquanay danandant maximum aurrant @ fa 10 19/	4 kHz	168	216	216	216	216	216
Frequency-dependent maximum current @ fs lim %	8kHz	116	211	216	216	216	216
Basic Time Period = 62.5 μs (Parameter is22=0)	16 kHz	63	116	137	147	158	168
	1.75 kHz	210	216	216	216	216	216
Everyoney dependent maximum august @ fo 1: / 9/	3.5 kHz	179	216	216	216	216	216
Frequency-dependent maximum current @ fs lim % Basic Time Period = 71.4 µs (Parameter is 22=1)	7kHz	129	216	216	216	216	216
Basic Time Period = 71.4μs (Parameter is22=1)	14 kHz	74	137	158	168	179	190
	1.5 kHz	210	216	216	216	216	216
Everyoney dependent maximum august @ fo le / 9/	3kHz	190	216	216	216	216	216
Frequency-dependent maximum current @ fs Ilim % Basic Time Period = 83.3 \(\mu \)s (Parameter is 22=2)	6kHz	142	216	216	216	216	216
Basic Time Feriou = 05.5 μs (Farameter 1522-2)	12 kHz	84	158	179	190	200	211
	1.25 kHz	211	216	216	216	216	216
Eraquanay danandant mayimum aurrant @ fa li 10/	2.5 kHz	200	216	216	216	216	216
Frequency-dependent maximum current @ fs // // // // // // // // // // // // //	5kHz	155	216	216	216	216	216
Basic Time Period = 100 µs (Parameter is22=3)	10 kHz	100	184	205	216	216	216
Table 27: Frequency-dependent maximum current fo	r device size	12					

Device size	,			1	3		
Rated switching frequency				8 k	Hz		
Output frequency	fout / Hz	0	3	6	12.5	25	50
	2kHz	216	216	216	216	216	216
Frequency-dependent maximum current @ fs Ilim %	4 kHz	200	216	216	216	216	216
Basic Time Period = 62.5 µs (Parameter is 22=0)	8kHz	100	200	216	216	216	216
Basic Time Feriou – 02.5 µs (Farameter 1522–0)	16 kHz	58	108	125	133	142	150
	1.75 kHz	216	216	216	216	216	216
Frequency-dependent maximum current @ fs lim %	3.5 kHz	204	216	216	216	216	216
Basic Time Period = 71.4 µs (Parameter is 22=1)	7kHz	125	216	216	216	216	216
Basic Time Feriou = 71.4 µs (Farameter 1522=1)	14 kHz	67	130	142	154	163	171
	1.5 kHz	216	216	216	216	216	216
Fraguency dependent maximum augrent @ fa /r / 9/	3kHz	208	216	216	216	216	216
Frequency-dependent maximum current @ fs Ilim % Basic Time Period = 83.3 \(\mu \) (Parameter is 22=2)	6kHz	150	216	216	216	216	216
Basic Time Feriou = 03.5 μs (Farameter 1522=2)	12 kHz	75	150	158	175	183	192
	1.25 kHz	216	216	216	216	216	216
Fraguency dependent maximum ourrent @ fo. 1: 19/	2.5 kHz	212	216	216	216	216	216
Frequency-dependent maximum current @ fs /lim / %	5kHz	175	216	216	216	216	216
Basic Time Period = 100 μs (Parameter is22=3)	10 kHz	88	175	188	204	216	216
Table 28: Frequency-dependent maximum current fo	r device size	13					

Device size				1	4		
Rated switching frequency				4 k	Hz		
Output frequency	fout / Hz	0	3.1	6.2	12.5	25	50
	2 kHz	157	216	216	216	216	216
Eroquanay danandant maximum aurrant @ fa / 1/2 / 0	4 kHz	145	216	216	216	216	216
Frequency-dependent maximum current @ fs lim %	8kHz	73	146	158	170	182	188
Basic Time Period = 62.5 µs (Parameter is22=0)	16 kHz	42	79	91	97	103	110
	1.75 kHz	158	216	216	216	216	216
Everyone videnandent maximum current @ fe liv / 0	3.5 kHz	149	216	216	216	216	216
Frequency-dependent maximum current @ fs Ilim % Basic Time Period = 71.4 \(\mu \)s (Parameter is 22=1)	7kHz	91	170	185	197	209	215
	14 kHz	49	94	103	112	118	124
	1.5 kHz	158	216	216	216	216	216
Everyone videnandent maximum current @ fe liv / 0	3 kHz	152	216	216	216	216	216
Frequency-dependent maximum current @ fs lim %	6kHz	109	194	212	216	216	216
Basic Time Period = 83.3 µs (Parameter is22=2)	12 kHz	55	109	115	127	133	139
	1.25 kHz	158	216	216	216	216	216
Everyone v dependent maximum aurvert @ for liv / 0	2.5 kHz	155	216	216	216	216	216
Frequency-dependent maximum current @ fs lim %	5kHz	127	216	216	216	216	216
Basic Time Period = 100 µs (Parameter is22=3)	10 kHz	64	127	136	149	158	164
Table 29: Frequency-dependent maximum current	or device size	14		•			

Device size				1	5		
Rated switching frequency				4 k	Hz		
Output frequency	fout / Hz	0	3.1	6.2	12.5	25	50
	2 kHz	108	180	180	180	180	180
Fraguency dependent maximum ourrent @ fo / 1/2 / 0/	4 kHz	100	167	180	180	180	180
Frequency-dependent maximum current @ fs Ilim % Basic Time Period = 62.5 \(\mu \)s (Parameter is 22=0)	8 kHz	50	100	108	117	125	129
Basic Time Feriou – 02.5 µs (Farameter 1822–0)	16 kHz	29	54	63	67	71	75
	1.75 kHz	108	180	180	180	180	180
Fraguency dependent maximum augrent @ fa la / 0/	3.5 kHz	102	171	180	180	180	180
Frequency-dependent maximum current @ fs Ilim % Basic Time Period = 71.4 \(\mu \) (Parameter is 22=1)	7kHz	63	117	127	135	144	148
	14 kHz	33	65	71	77	81	85
	1.5 kHz	108	180	180	180	180	180
Frequency-dependent maximum current @ fs Ilim %	3 kHz	104	175	180	180	180	180
Basic Time Period = 83.3 µs (Parameter is 22=2)	6kHz	75	133	146	154	163	167
Basic Time Feriou – 65.3 µs (Farameter 1822–2)	12 kHz	38	75	79	88	92	96
	1.25 kHz	108	180	180	180	180	180
Fraguency dependent maximum augrent @ fa la / 0/	2.5 kHz	106	179	180	180	180	180
Frequency-dependent maximum current @ fs /lim / %	5kHz	88	150	165	173	180	180
Basic Time Period = 100 µs (Parameter is22=3)	10 kHz	44	88	94	102	108	113
Table 30: Frequency-dependent maximum current for	or device size	15					

Device size				1	6		
Rated switching frequency				2 k	Hz		
Output frequency	fout / Hz	0	3.1	6.2	12.5	25	50
	2kHz	100	166	180	180	180	180
 Frequency-dependent maximum current @ fs Ilim %	4 kHz	75	136	149	158	164	167
Basic Time Period = 62.5 µs (Parameter is 22=0)	8 kHz	49	94	103	109	115	118
Basic Time Periou – 62.5 µs (Parameter 1522–0)	16 kHz	24	52	58	64	67	70
	1.75 kHz	100	167	180	180	180	180
Francisco de la condesta de estado en la confessione de la condesta de la condest	3.5 kHz	82	144	157	165	172	176
Frequency-dependent maximum current @ fs Ilim % Basic Time Period = 71.4 \(\mu \)s (Parameter is 22=1)	7 kHz	55	105	114	121	127	130
	14 kHz	30	59	67	73	76	79
	1.5 kHz	100	167	180	180	180	180
Francisco de la condesta de estado en la confessione de la condesta de la condest	3 kHz	88	152	165	173	180	180
Frequency-dependent maximum current @ fs Ilim % Basic Time Period = 83.3 µs (Parameter is 22 = 2)	6kHz	62	115	126	133	139	142
Basic Time Periou = 63.3 μs (Parameter is22=2)	12 kHz	36	67	76	82	85	88
	1.25 kHz	100	167	180	180	180	180
Fraguency dependent maximum august @ f. / 1. / 0/	2.5 kHz	94	159	174	180	180	180
Frequency-dependent maximum current @ fs Ilim %	5 kHz	69	126	137	146	152	155
Basic Time Period = 100 µs (Parameter is22=3)	10 kHz	42	80	89	96	100	103
Table 31: Frequency-dependent maximum current for	or device size	16 (2 k	(Hz)				

Device size				1	6		
Rated switching frequency				4 k	Hz		
Output frequency	fout / Hz	0	3.1	6.2	12.5	25	50
	2kHz	127	179	180	180	180	180
Francisco de la condesta manifesta como esta esta de la 1000	4 kHz	100	164	180	180	180	180
Frequency-dependent maximum current @ fs Ilim %	8 kHz	91	136	167	180	180	180
Basic Time Period = 62.5 µs (Parameter is22=0)	16 kHz	58	88	109	118	121	124
	1.75 kHz	127	179	180	180	180	180
Francisco de la condesta de contra de la contra del contra de la contra del la contra del la contra del la contra de la contra de la contra de la contra del la contra del la contra de la contra de la contra de la contra del la contra d	3.5 kHz	107	167	180	180	180	180
Frequency-dependent maximum current @ fs lim % Basic Time Period = 71.4 \(\mu \)s (Parameter is 22=1)	7kHz	93	143	174	180	180	180
	14 kHz	65	99	121	129	133	138
	1.5 kHz	127	179	180	180	180	180
Francisco de la condesión de la companión de l	3 kHz	114	171	180	180	180	180
Frequency-dependent maximum current @ fs Ilim %	6kHz	96	150	180	180	180	180
Basic Time Period = 83.3 µs (Parameter is22=2)	12 kHz	73	109	133	139	146	152
	1.25 kHz	127	179	180	180	180	180
Francisco de la condesta de contra de la contra del contra de la contra del contra de la contra del la contra del contra de la contra del la	2.5 kHz	121	175	180	180	180	180
Frequency-dependent maximum current @ fs /lim / %	5kHz	98	157	180	180	180	180
Basic Time Period = 100 µs (Parameter is22=3)	10 kHz	82	123	150	161	167	173
Table 32: Frequency-dependent maximum current for	or device size	16 (4)	(Hz)				

3.3.4 Power dissipation at rated operation of the 400 V devices

Device size		12	13	14	15	16	16
Rated switching frequency		8	8	4	4	2	4
Power dissipation at rated operation 1)	<i>P</i> _D / W	155	180	175	250	275	330
Table 33: Power dissipation of the 400 V device	es						

¹⁾ Rated operation corresponds to $U_N = 400 \, \text{V}$; f_{SN} ; $f_N = 50 \, \text{Hz}$ (typically value)

3.3.5 Fuse protection of the drive converters of the 400V devices

		Max. size o	f the fuse / A				
Device size	U _N = 400 V gG (IEC)	<i>U</i> _N = 480 V class "J"	U _N = 480 V gR				
	SCCR 30 kA	SCCR 5kA	SCCR 30 kA	Type			
12	20	15	16	SIBA 50 140 06.16			
13	25	20	20	SIBA 50 140 06.20			
14	25	25	25	SIBA 50 140 06.25			
15	35	35	40	SIBA 50 140 06.40			
16	50	50	50	SIBA 50 140 06.50			
Table 34: Fu	using of the 400 V / 480	V devices	·	·			

Short-circuit capacity

After requests from *EN 60439-1* and *EN 61800-5-1* the following is valid for the connection to a network: The devices are suitable for use in a circuit capable of delivering not more than 30 kA eff. unaffected symmetrical short-circuit current.

3.4 General electrical data

3.4.1 Switching frequency and temperature of the 230 V devices

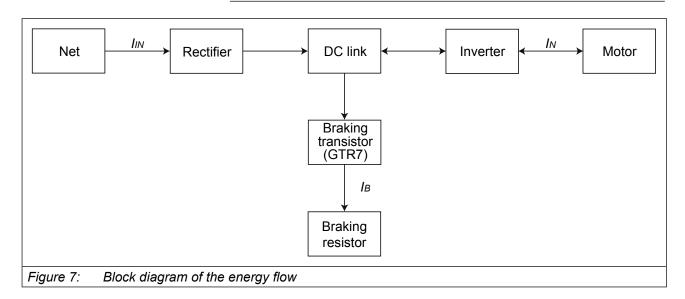
Device size			10	12	13	14		
Rated switching frequency	1)	<i>f</i> s∧ / kHz	8	4	4	4		
Max. switching frequency	1)	fs_max / kHz	z 16					
Min. switching frequency	1)	fs_min / kHz	Hz 2					
Max. heat sink temperature		Ths / °C	90					
Temperature for derating the switching frequency		T _{DR} / °C	80					
Temperature for uprating the switching frequency		Tur / °C	70					
Temperature for switching to rated switching frequency		Тем / °C	85					
Table 35: Switching frequency and temperature of the 230 V devices								

3.4.2 Switching frequency and temperature of the 400 V devices

Device size			12	13	14	15	1	6
Rated switching frequency	1)	fsn / kHz	8	8	4	4	2	4
Max. switching frequency	1)	fs_max / kHz	16					
Min. switching frequency	1)	fs_min / kHz	2					
Max. heat sink temperature		Ths / °C	90					
Temperature for derating the switching frequency		TDR / °C			8	0		
Temperature for uprating the switching frequency		Tur / °C			7	0		
Temperature for switching to rated switching frequency		Тем / °C	85					
Table 36: Switching frequency and temperature of the 400 V devices								

The output frequency is to be limited in such a way that it does not exceed 1/10 of the switching frequency.

The drive converter cooling is designed by way that the heat sink overtemperature threshold is not exceeded at rated conditions. A switching frequency higher than the rated switching frequency also produces higher losses and thus a higher heat sink heating. If the heat sink temperature reaches a critical threshold (TDR), the switching frequency can be reduced automatically step by step. This prevents that the drive converter switches off due to overheating of the heat sink. If the heat sink temperature falls below TUR, the switching frequency is increased back to the setpoint. At temperature TEM the switching frequency is immediately reduced to rated switching frequency. "Derating" must be activated, for this function to work.



3.4.3 DC link / braking transistor function (GTR7)

NOTICE

Destruction of the drive converter if the value falls below the minimum brake resistance value

▶ The minimum brake resistance value must not fall below!

3.4.3.1 DC link / braking transistor function of the 230 V devices

		12	13	14					
UN_dc / V	325								
Un_dc_UL / V	339								
UIN_dc / V	240373								
Uup / V	216								
Uop / V	400								
U _B / V	380								
IB_max / A		21.5		33.6					
RB_min / Ω		19		12					
	No protection function available								
C / µF	1410 tbd tbd t								
Table 37: DC link / braking transistor function of the 230 V devices									
	UN_dc_UL / V UIN_dc / V UUP / V UOP / V UB / V IB_max / A RB_min / Q	UN_dc_UL / V UIN_dc / V UUP / V UOP / V UB / V B_max / A RB_min / Ω No p	UN_dc_UL V 33 34 35 35 36 36 36 36 36 36	UN_dc_UL V 339 240373 UIN_dc V 240373 UUP V 216 UOP V 400 UB V 380 IB_max A 21.5 RB_min Ω 19 No protection function avail C / μF 1410 tbd tbd tbd					

The DC switching level for the braking transistor is adjustable. The default value is the value specified in the table.

GENERAL ELECTRICAL DATA

3.4.3.2 DC link / braking transistor function of the 400 V devices

Device size	12	13	14	15	16	
DC link rated voltage @ UN = 400 V	Un_dc / V	565				
DC link rated voltage @ UN_UL = 480 V	Un_dc_UL / V			680		
DC link voltage working voltage range	UIN_dc / V			390780		
DC switch-off level "Error! Underpotential"	Uup / V			240		
DC switch-off level "Error! Overpotential"	Uop / V	840				
DC switch-off level braking resistor 1)	U _B / V	780				
Max. braking current	IB_max / A	21.5 33.6			33.6	
Min. braking resistor value R_{B_min} / Ω			39 25			25
otection function for braking transistor TR7) No protection function available			ole			
DC link capacity	C/µF	470	705	820	1230	1230
Table 38: DC link / braking transistor function of the 400 V devices						

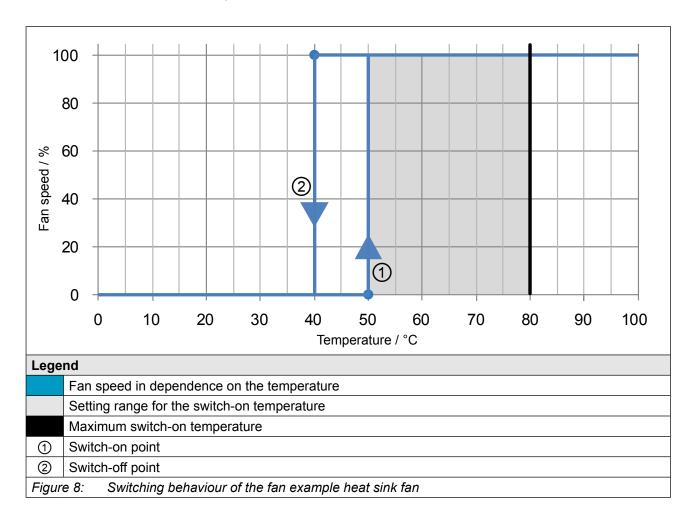
The DC switching level for the braking transistor is adjustable. The default value is the value specified in the table.

3.4.4 Fan

Device size		10	12	13	14	15	16
Interior for	Number	1					
Interior fan Speed-variable		n	no				
Heat sink for	Number	2					
Heat sink fan Speed-variable				n	0		
Table 39: Fan							

The fans are not speed adjustable.

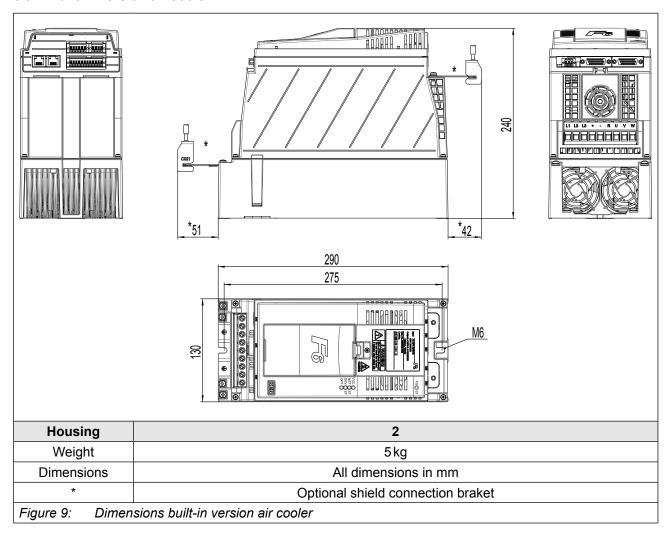
NOTICE


Destruction of the fan!

► Take care that no foreign substances drop into the fan!

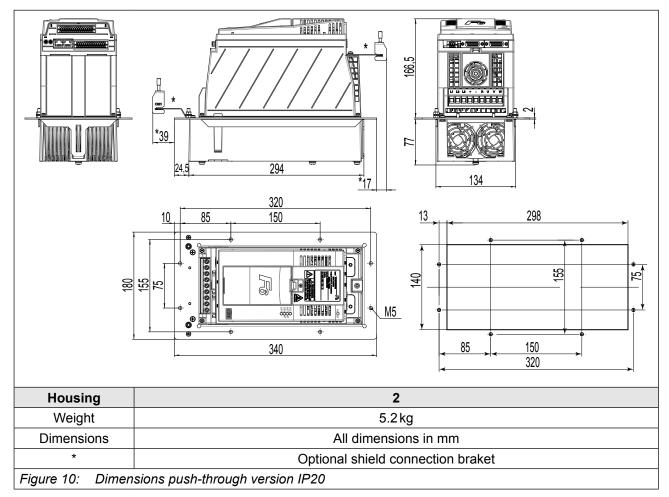
3.4.4.1 Switching behaviour of the fans

The fans have different switch-on and switch-off points. The switching point for the switch-on temperature ① is adjustable. The hysteresis for the switch-off temperature ② cannot be changed. The switching behaviour of the fans depends on the heat sink and interior temperature.

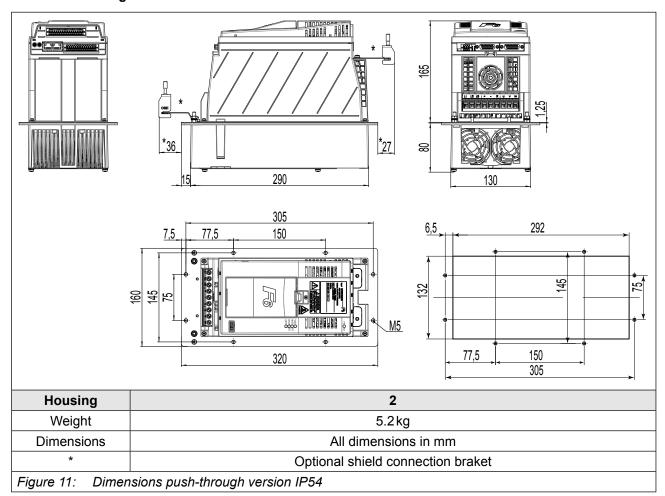

3.4.4.2 Switching points of the fans

The switching point for the switch-on temperature and the maximum speed level of the fans are adjustable. The following table shows the default values.

Fan		Heat sink	Interior
Switch-on temperature	T/°C	50	45
Maximum switch-on temperature T/°C		80	55
Table 40: Switching points of the	e fans		


3.5 Dimensions and weights

3.5.1 Built-in version air cooler


3.5.2 Push-through version IP20

Optional push-through frame for the IP20 push-through version: 00F6V80-2004. Further information => "Mounting kit push-through frame for IP20 devices".

3.5.3 Push-through version IP54

IP54 zone: Heat sink underneath the mounting plate

For proper installation, the enclosed seal (20F6T45-0001) must be installed between heat sink and housing (e.g. cabinet wall). The tightness must be checked after the installation. If properly installed, the separation to the housing corresponds to degree of protection IP54. However, the fans must be protected against unfavorable environmental influences. These include combustible, oily or dangerous fumes or gases, corrosive chemicals, coarse foreign bodies and excessive dust. This applies especially to the access of the heatsink from the top (air outlet). Icing is inadmissible.

IP20 zone: Device above the mounting plate

Power connections excluded => "Climatic environmental conditions". This part is intended for the installation in a suitable housing for the required degree of protection (e.g. control cabinet).

UL: Device heat sink is classified as NEMA type 1.

3.5.4 Control cabinet installation

3.5.4.1 Mounting instructions

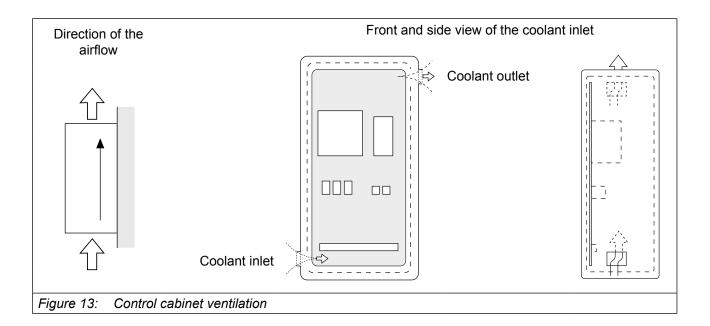
The following mounting materials with the appropriate quality must be used to mount the drive converter.

Required material	Tightening torque
Socket screw ISO 4762 - M6 - 8.8	6.5 Nm 58 lb inch
Flat washer <i>ISO 7092</i> - 6 - 200 HV	_
Table 41: Mounting instructions for built-in version	

Required material	Tightening torque
Socket screw ISO 4762 - M5 - 8.8	2.5 Nm 22 lb inch
Flat washer ISO 7092 - 5 - 200 HV	_
Table 42: Mounting instructions for push-through version	1

3.5.4.2 Mounting distances

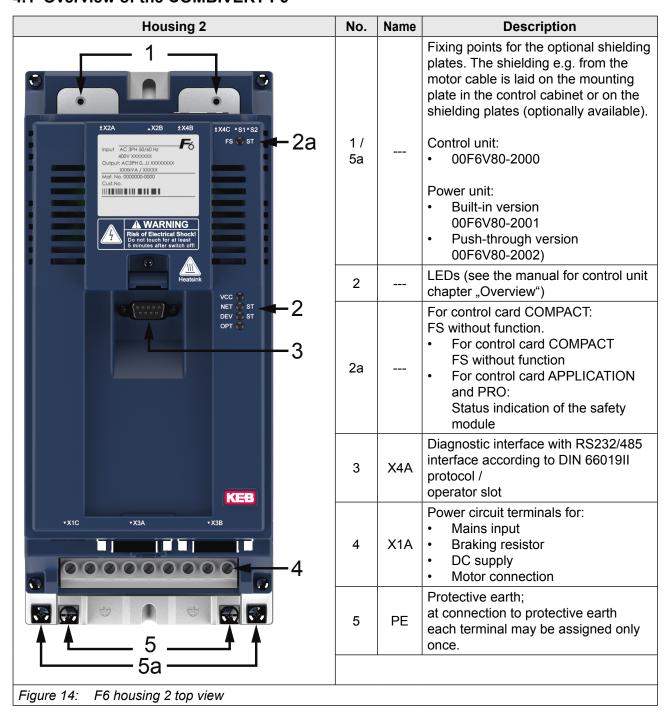
Power dissipation for the control cabinet dimension => "Power dissipation at rated operation of the 400 V devices". A lower value can be used here depending on the operating mode/load.

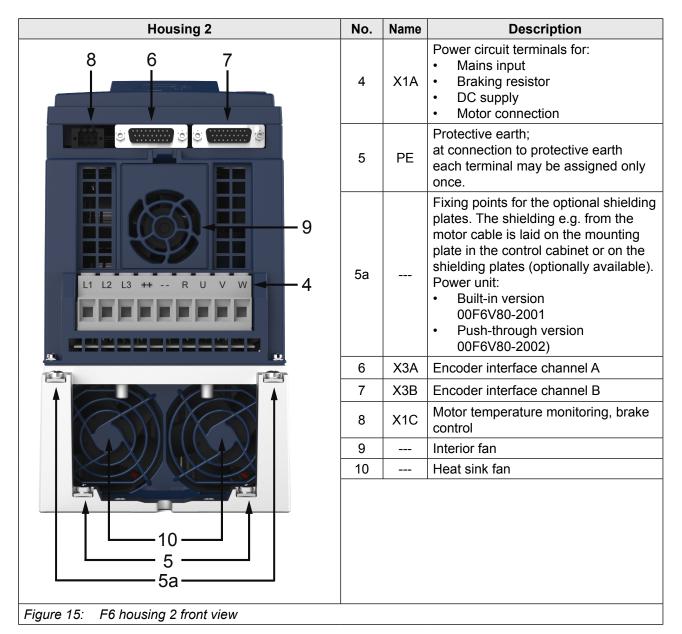

Reach maximum cooling capacity

For maximum cooling capacity (volume flow), the drive converter must be mounted without any distance on a smooth, closed mounting plate.

Mounting distances	Dimen- sion	Distance in mm	Distance in inch
	Α	150	6
†	В	100	4
_ A	С	30	1.2
	D	0	0
	X 1)	50	2
	¹⁾ Distance inet door	to preceding elemen	ts in the control cab-
Figure 12: Mounting distances			

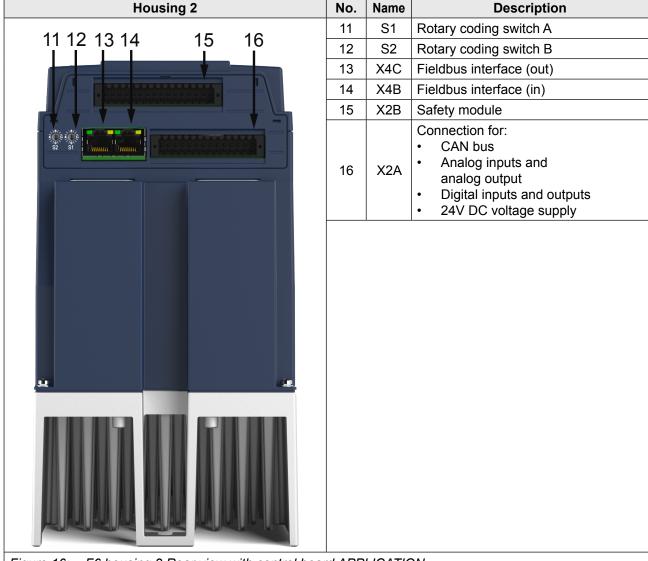
If construction-conditioned the control cabinet cannot be without indoor ventilation, appropriate filters must avoid suction of foreign objects.

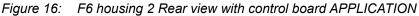

DIMENSIONS AND WEIGHTS



4 Installation and Connection

4.1 Overview of the COMBIVERT F6





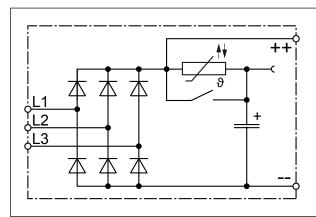
Terminal R can alternatively be labeled with PB.

Further views can be found in the respective control board manual.

Instructions for use COMBIVERT F6 control board APPLICATION www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_en.pdf

Instructions for use COMBIVERT F6 control board COMPACT www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-k-inst-20144795_en.pdf

Instructions for use COMBIVERT F6 control board PRO www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_en.pdf


4.2 Connection of the power unit

NOTICE

Destruction of the drive converter!

► Never exchange mains input and motor output!

4.2.1 Connection of the voltage supply

The COMBIVERT F6 housing 2 can be supplied from the mains. The starting current limiting is arranged before the DC link.

Figure 17: Input circuit

Minimum waiting period between two switch-on procedures 5 minutes!

Cyclic switching on and off of the device leads to temporary high resistance of the resistor (NTC) in the input. This causes a higher starting current, which causes stress to the components in the input range (e.g. the input rectifier) and can lead to triggering of the mains fuse.

4.2.1.1 Terminal block X1A

Name	Function	Cross-section for terminal connection	Tightening torque	Max. number of conductors
L1				
L2	Mains connection 3-phase			
L3	- 5-рпазе			
++	DC terminals	Flexible line with wire-end ferrule with		
	DC terminals	plastic collars 2.510 mm ² For 2 conductors 0.5mm1.5mm ²	1.5 Nm	For IEC: 2
R	Connection for brak- ing resistor (between R and ++)	For UL flexible line without wire-end ferrule AWG 266	13 lb inch	For UL: 1
U				
V	Motor connection			
W				
Figure 18:	Terminal block X1A			

Terminal R can alternatively be labeled with PB.

4.2.2 Protective earth and function earth

Protective and functional earth must not be connected to the same terminal.

4.2.2.1 Protective earth

The protective earth (PE) serves for electrical safety particularly personal protection in error case.

A CAUTION

Electric shock due to incorrect dimensioning!

► Cross-section wire to ground should be selected according to DIN IEC 60364-5-54!

Name	Function	Terminal connection	Tightening torque			
PE,	Connection for protective earth	Screw M4 for crimp connector	1.3 Nm 11 lb inch			
Figure 19: Connection for protective earth						

Incorrect installation of the PE connection

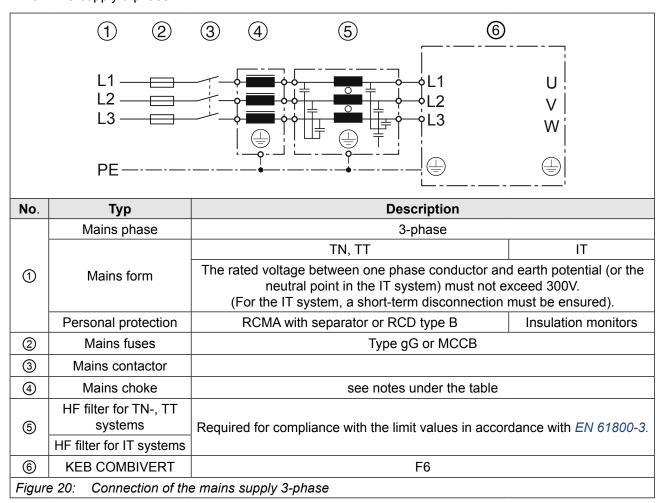
Only the M4 screws may be used to connect the protective earth!

4.2.2.2 Functional earthing

A functional earthing may also be necessary, if for EMC requirements additional potential equalization between devices or parts of the system must be available.

The use of the functional earth (FE) is not required if the frequency inverter is EMC-technically wired as described in the manual => Before starting.

The functional earth may not be wired green / yellow!


Notes on EMC-compatible installation can be found here. www.keb.de/fileadmin/media/Manuals/emv/0000neb0000.pdf

4.2.3 AC mains connection

4.2.3.1 AC supply 3-phase

4.2.3.2 Supply line

The conductor cross-section of the supply line is determined by the following factors:

- Input current of the drive converter
- Used line type
- · Installation and ambient temperatures
- The locally valid electrical regulations

The application engineer is responsible for the design!

CONNECTION OF THE POWER UNIT

4.2.3.3 Note on hard power systems

The service life of drive converters with voltage DC link depends on the DC voltage, surrounding temperature and the current load of the electrolytic capacitors in the DC link. The use of mains chokes can increase the service life of the condensators to a considerable extent, especially when connecting to "hard" power systems or when under permanent drive load (continuous duty).

The term "hard" power system means that the nodal point power (S_{Net}) of the mains is very high (>> 200) compared to the output rated power of the drive converter (S_{out}) (>>200).

$$k = \frac{S_{Net}}{S_{out}} >> 200$$

e.g.

$$k = \frac{2 \text{MVA (supply transformer)}}{11.4 \text{ kVA (14F6)}} = 176 \longrightarrow \text{no choke required}$$

A listing of filters and chokes => "Filters and chokes".

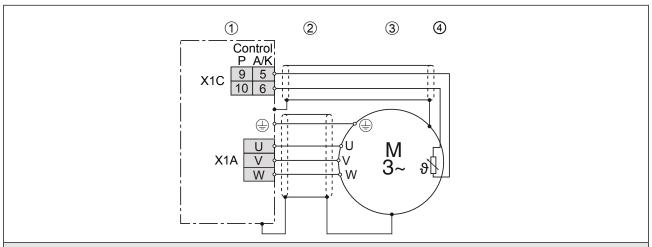
4.2.4 DC connection

NOTICE

DC operation

▶ DC operation is only permitted after consultation with KEB!

4.2.4.1 Terminal block X1A DC connection



Name	Function	Cross-section for terminal connection	Tightening torque	Max. number of conductors
++	DC townsin als	Flexible line with wire-end ferrule with plastic collars 2.510 mm ² For 2 conductors 0.5mm1.5mm ²	1.5 Nm	For IEC: 2
	DC terminals	For UL flexible line without wire-end ferrule AWG 266	13 lb inch	For UL: 1

Figure 21: Terminal block X1A DC connection

4.2.5 Connection of the motor

4.2.5.1 Wiring of the motor

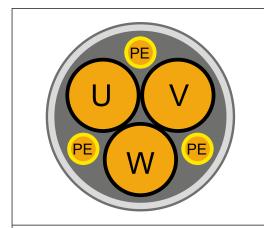
Legend

- ① | KEB COMBIVERT
- 2 Apply motor cable, shielding on both sides over a large surface on the bare metallic frame or mounting plate (remove paint if necessary)
- ③ Three-phase motor
- 4 Temperature monitoring (optional) => Instructions for use "Control circuit"

Figure 22: Wiring of the motor

4.2.5.2 Terminal block X1A motor connection

Name	Function	Cross-section for terminal connection	Tightening torque	Max. number of conductors	
U		Flexible line with wire-end ferrule with plastic collars 2.510 mm ²		For IEC: 2	
V	Motor connection	For 2 conductors 0.5mm1.5mm ²	1.5 Nm 13 lb inch	For UL: 1	
W		For UL flexible line without wire-end ferrule AWG 266		FOI OL. I	
Figure 22: Terminal block V1A motor connection					


| Figure 23: Terminal block X1A motor connection

4.2.5.3 Selection of the motor line

The correct cabling as well as the motor line itself play an important part in case of low power in connection with long motor line lengths. Low-capacitance line (phase/phase < 65 pF/m, phase/screen < 120 pF/m) at the inverter output have the following effects:

- allow major motor line lengths (=> "Motor cable length and conducted interferences at AC supply")
- better EMC properties (reduction of the common-mode output currents to earth)

The use of shielded motor lines with symmetrical structure is required for higher motor power (from 30 kW). In these lines the protective earth conductor is tripartite and evenly arranged between the phase lines. A cable without protective earth conductor can be used if local regulations so permit. Then the protective earth conductor must be laid externally. Certain lines also permit the shield for the use as protective earth conductor. For this, observe the details of the line manufacturer!

Figure 24: Symmetrical motor line

4.2.5.4 Motor cable length and conducted interferences at AC supply

The maximum motor cable length is depending on the capacity of the motor cable as well as on the EMC emitted interference. External measures must be taken here (e.g. the use of a line filter). The following information is valid for the operation under rated conditions and the use of KEB listed filters under chapter => "Filters and chokes"!

	Max. motor cable length shielded	
	in accordance with EN 61800-3	max. leakage current
Inverter	Category C2	(at <i>f</i> _N ≤ 100 Hz)
size	Motor cable (low capacitance)	
10		
12		
13	100 m	∠ E m A
14	100111	< 5 mA
15		
16		
Table 43:	Max. motor cable length	

The line length can be increased significant by using motor chokes or motor filters. KEB recommends the use of motor chokes or filters for a line length upto 50 m. Motor chokes or filters are absolutely necessary upto 100 m.

CONNECTION OF THE POWER UNIT

4.2.5.5 Motor cable length for parallel operation of motors

The resulting motor cable length for parallel operation of motors, or parallel installation with multiple cables arises from the following formula:

resulting motor cable length = \sum single line length x \sqrt{Number} of motor lines

4.2.5.6 Motor cable cross-section

The motor cable cross-section is dependent

- on the characteristic of the output current (e.g. harmonic content)
- on the real effective value of the motor current
- · on the line length
- on the type of the used line
- on the ambient conditions such as bundling and temperature

4.2.5.7 Interconnection of the motor

NOTICE

Incorrect behavior of the motor!

► The connecting-up instructions of the motor manufacturer are always generally valid!

Protect motor against voltage peaks!

▶ Drive converters switch at the output with high dv/dt. Voltage peaks that endanger the insulation system at the motor can occur especially in case of long motor cables (>15 m). A motor choke, a dv/dt-filter or sine-wave filter can be used to protect the motor with regard to the operating mode.

4.2.5.8 Connection of the temperature monitoring and brake control (X1C)

A switchable temperature evaluation is implemented in the COMBIVERT.

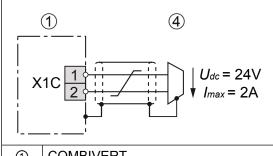
There are different types for the evaluation available. These are dependending on the control board => instruction manual "control board".

The desired operating mode can be adjusted via software (dr33). If the evaluation is not required, it must be deactivated via software (parameter pn33 = 7) => Programming manual

X1C	PIN	Name	Description
	1	BR+	Brake control / output +
	2	BR-	Brake control / output -
	3	reserved	-
2 4 6	4	reserved	ŀ
	5	TA1	Temperature detection / output +
	6	TA2	Temperature detection / output -
1 3 5			
5: 05 T : 1/1 / Y	40.5		

Figure 25: Terminal block X1C for control board APPLICATION and COMPACT

X1C	PIN	Name	Description
2 4 6 8 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	BR+	Brake control / output +
	2	BR-	Brake control / output -
	3	0V	For supply of the checkback inputs
	4	24Vout	
	5	DIBR1	Checkback input 1 for brake and relay
	6	DIBR2	Checkback input 2 for brake and relay
	7	reserved	_
	8	reserved	_
	9	TA1	Temperature detection / output +
		DSL+	Digital motor temperature and position detection
	10	TA2	Temperature detection / output -
		DSL-	Digital motor temperature and position detection
Figure 26: Terminal block Y1C for control board BBO			


Figure 26: Terminal block X1C for control board PRO

NOTICE

Malfunctions due to incorrect line or laying!

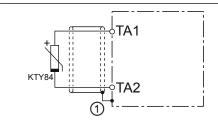
Malfunctions of the control due to capacitive or inductive coupling.

- ▶ Do not route cables from the motor temperature sensor (also shielded) together with control cables.
- ► Cables from the motor temperature sensor within the motor cables may only be used with double shielding!
- ▶ The input of the temperature detection has basic isolation.

(1) **COMBIVERT**

4 **Brake** For control board APPLICATION and COMPACT.

The voltage to the control of a brake is decoupled from the internal voltage supply. The brake works only with external voltage supply.


For control board PRO

The brake can be supplied with both, internal and external voltage. Voltage tolerances and output currents vary for internal and external voltage supply..

Respect the specifications

=> instruction manual "control board"

Connection of the brake control Figure 27:

KTY sensors are polarized semiconductors and must be operated in forward direction! To this connect the anode to TA1 and the cathode to TA2! Non-observance leads to incorrect measurements in the upper temperature range. A protection of the motor winding is then no longer guaranteed.

Connection via shield plate (if not available, place on the mounting plate).

Figure 28: Connection of a KTY sensor

NOTICE

No protection of the motor winding in case of wrong connection.

- ▶ Operate KTY sensors in forward direction.
- ► KTY sensors may not be combined with other detections.

<u>NOTE</u>

"Basic insulation" against SELV voltage of the control. A system voltage (Phase – PE) of 300 V is defined. Consequently, the connected sensors also must have a "basic insulation" to the mains potential (e.g. motor winding)!

More information about the wiring of the temperature monitoring and the brake control are described in the respective control unit manual.

4.2.6 Connection and use of a braking resistor

A CAUTION

Fire risk by using brake resistors!

► The risk of fire can be significantly reduced by using "intrinsically safe braking resistors" or by using suitable monitoring functions / circuits.

NOTICE

Destruction of the frequency inverter if the vale has fallen below the minimum brake resistance value!

► The minimum brake resistance value must not fall below! => "Overview of the 400 V devices"

A CAUTION

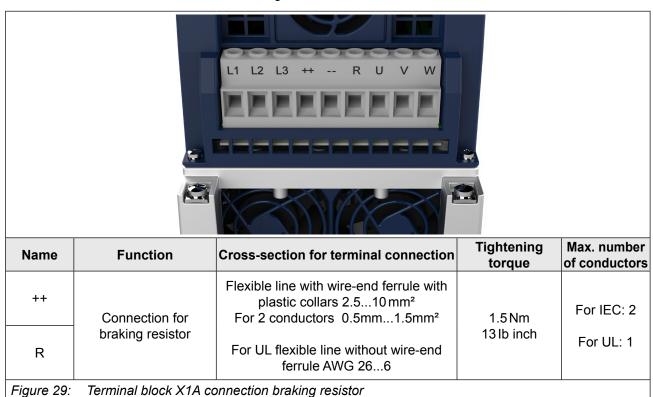
Hot surfaces caused by load of the braking resistor!

<u>{{{</u>

Burning of the skin!

- ► Cover hot surfaces safe-to-touch.
- ▶ Before touching, check the surface.
- ▶ If necessary, attach warning signs on the system.

4.2.6.1 Installation instructions for side-mounted braking resistors



Instructions for the installation of intrinsically safe braking resistors https://www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_en.pdf Chapter "Installation instructions".

CONNECTION OF THE POWER UNIT

4.2.6.2 Terminal block X1A connection braking resistor

4.2.6.3 Wiring of an intrinsically safe braking resistor

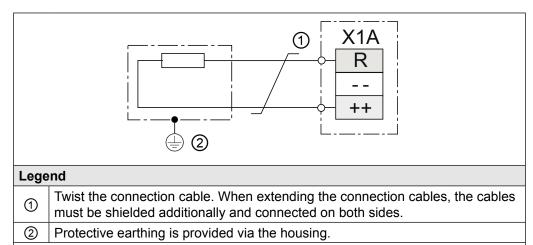


Figure 30: Wiring of an intrinsically safe braking resistor

Intrinsically safe braking resisitors behave in error case such as a safety fuse. They interrupt themselves without fire risk.

4.2.6.4 Using a non-intrinsically safe braking resistor

Using a non-intrinsically safe braking resistor with extended temperature monitoring

 $www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_en.pdf$

Chapter "Connection of a braking resistor with extended temperature monitoring".

4.3 Accessories

4.3.1 Filters and chokes

Voltage class	Drive converter size	HF filter	Mains choke 50 Hz / 4% Uk	
	10	14E6T601050	10Z1B031000	
230 V	12	14E6T601050	12Z1B031000	
	13	16E6T601050	13Z1B031000	
	14	16E6T601050	14Z1B031000	
Table 44: Filters and chokes for 230V devices				

Voltage class	Drive converter size	HF filter	Mains choke 50 Hz / 4% Uk
	12	12E6T60-3000	12Z1B04-1000
	13	14E6T60-3000	13Z1B04-1000
400 V	14	14E6T60-3000	14Z1B04-1000
	15	16E6T60-3000	15Z1B04-1000
	16	16E6T60-3000	16Z1B04-1000
Table 45: Filters and chokes for 400V devices			

The specified filters and chokes are designed for rated operation.

4.3.2 Mounting kit shield connection brakets

Name	Material number
Mounting kit shield connection braket control unit	00F6V80-2000
Mounting kit shield connection braket power unit for built-in version	00F6V80-2001
Mounting kit shield connection braket power unit for push-through version IP20 / IP54	00F6V80-2002
Table 46: Mounting kit shield connection brakets	

4.3.3 Mounting kit push-through frame for IP20 devices

Name	Material number
Push-through frame for push-through version IP20 (built-in version in push-through version)	00F6V80-2004
Table 47: Mounting kit for IP20 devices	

The built-in version can be converted with the mounting kit to an IP20 push-through version. The mounting kit for IP20 devices can be attached subsequently to the built-in version.

4.3.4 Side-mounted braking resistors

Technical data and design about intrinsically safe braking resistors => https://www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_en.pdf

Technical data and design about non-intrinsically safe braking resistors => https://www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_en.pdf

5 Certification

5.1 CE-Marking

CE marked drive converters were developed and manufactured to comply with the regulations of the Low-Voltage Directive and EMC directive. The harmonized standards of the series *EN 61800-5-1* and *EN 61800-3* were used.

For further information regarding the CE declarations of conformity => "Further informations and documentation".

5.2 UL certification

Acceptance according to UL is marked at KEB drive converters with the adjacent logo on the nameplate.

To be conform according to UL for use on the North American and Canadian Market the following additionally instructions must be observed (original text of the UL-File):

- Control Board Rating of relays (30Vdc/1A)
- · Brake resistor ratings and duty cycle: see RATINGS
- Maximum Surrounding Air Temperature 45°C
- · Use in a Pollution Degree 2 environment
- Power Terminals X1A
 Use 75°C Copper Conductors Only

CSA:

Power Terminals X1A: Maximum wire sizes and tightening torques:

LU10.16 (Weidmueller):

max. AWG 8 (maximum stripping length 10 mm),

20.5 lb-inch (2.3 Nm)

- During the UL evaluation, only Risk of Electrical Shock and Risk of Fire aspects were investigated. Functional Safety aspects were not evaluated!
- WARNING The opening of the branch circuit protective device may be an
 indication that a fault current has been interrupted. To reduce the risk of fire or
 electrical shock, current-carrying parts and other components of the controller
 should be examined and replaced if damaged. If burnout of the current element of
 an overload relay occurs, the complete overload relay must be replaced.

5.3 Further informations and documentation

You find supplementary manuals and instructions for the download under www.keb.de/de/service/downloads

General instructions

- EMC and safety instructions
- Manuals for additional control boards, safety modules, fieldbus modules, etc.

Instruction and information for construction and development

- · Input fuses in accordance with UL
- Programming manual for control and power unit
- Motor configurator to select the appropriate drive converter and to create downloads for parameterizing the drive converter

Approvals and approbations

- Declaration of conformity CE
- TÜV certificate
- FS certification

Others

- COMBIVIS, the software for comfortable parameterization of drive converters via PC (available per download)
- EPLAN- drawings

6 Revision History

Version	Date	Description
00	2015-10	Prototype
01	2016-04	Pre-series
02	2016-08	Pre-series (without UL certification)
03	2016-11	UL certified terminal X1A included
04	2017-02	Series version, 4kHz devices included (device size 16), new CI, UL certification included
05	2018-05	Corrections to the technical data figures of the overload characteristics adapted
06	2019-11	Switching performance of fans added, data of overload characteristics adapted.
07	2020-01	Inclusion of the 230V devices

NOTES

Austria | KEB Automation GmbH Ritzstraße 8 4614 Marchtrenk Austria Tel: +43 7243 53586-0 Fax: +43 7243 53586-21 E-Mail: info@keb.at Internet: www.keb.at

Benelux | KEB Automation KG

Dreef 4 - box 4 1703 Dilbeek Belgium

Tel: +32 2 447 8580

E-Mail: info.benelux@keb.de Internet: www.keb.de

Brazil | KEB South America - Regional Manager Rua Dr. Omar Pacheco Souza Riberio, 70 CEP 13569-430 Portal do Sol, São Carlos Brazil Tel: +55 16 31161294 E-Mail: roberto.arias@keb.de

Czech Republic | KEB Automation GmbH Videnska 188/119d 61900 Brno Czech Republic Tel: +420 544 212 008 E-Mail: info@keb.cz Internet: www.keb.cz

France | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel
94510 La Queue en Brie France
Tel: +33 149620101 Fax: +33 145767495

E-Mail: info@keb.fr Internet: www.keb.fr

Germany | Geared Motors

KEB Antriebstechnik GmbH
Wildbacher Straße 5 08289 Schneeberg Germany
Telefon +49 3772 67-0 Telefax +49 3772 67-281
Internet: www.keb-drive.de E-Mail: info@keb-drive.de

Italy | KEB Italia S.r.I. Unipersonale
Via Newton, 2 20019 Settimo Milanese (Milano) Italia
Tel: +39 02 3353531 Fax: +39 02 33500790
E-Mail: info@keb.it Internet: www.keb.it

 Japan | KEB Japan Ltd.

 15 - 16, 2 - Chome, Takanawa Minato-ku Tokyo 108 - 0074 Japan Tel: +81 33 445-8515 Fax: +81 33 445-8215

 E-Mail: info@keb.jp Internet: www.keb.jp

P. R. China | KEB Power Transmission Technology (Shanghai) Co. Ltd.
No. 435 QianPu Road Chedun Town Songjiang District
201611 Shanghai P.R. China
Tel: +86 21 37746688 Fax: +86 21 37746600
E-Mail: info@keb.cn Internet: www.keb.cn

Poland | KEB Automation KG

Tel: +48 60407727

E-Mail: roman.trinczek@keb.de Internet: www.keb.de

Republic of Korea | KEB Automation KG
Room 1709, 415 Missy 2000 725 Su Seo Dong
Gangnam Gu 135-757 Seoul Republic of Korea
Tel: +82 2 6253 6771 Fax: +82 2 6253 6770 E-Mail: vb.korea@keb.de

Russian Federation | KEB RUS Ltd.

Lesnaya str, house 30 Dzerzhinsky MO 140091 Moscow region Russian Federation Tel: +7 495 6320217 Fax: +7 495 6320217 E-Mail: info@keb.ru Internet: www.keb.ru

Spain | KEB Automation KG
c / Mitjer, Nave 8 - Pol. Ind. LA MASIA
08798 Sant Cugat Sesgarrigues (Barcelona)
Tel: +34 93 8970268 Fax: +34 93 8992035 E-Mail: vb.espana@keb.de

Switzerland | KEB Automation AG
Witzbergstrasse 24 8330 Pfaeffikon/ZH Switzerland
Tel: +41 43 2886060 Fax: +41 43 2886088
E-Mail: info@keb.ch Internet: www.keb.ch

United Kingdom | KEB (UK) Ltd.
5 Morris Close | Park Farm Indusrial Estate
Wellingborough, Northants, NN8 6 XF | United Kingdom

Tel: +44 1933 402220 Fax: +44 1933 400724 E-Mail: info@keb.co.uk Internet: www.keb.co.uk

United States | KEB America, Inc
5100 Valley Industrial Blvd. South
Shakopee, MN 55379 United States
Tel: +1 952 2241400 Fax: +1 952 2241499
E-Mail: info@kebamerica.com Internet: www.kebamerica.com

MORE KEB PARTNERS WORLDWIDE:

Automation with Drive

www.keb.de

KEB Automation KG Suedstrasse 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de